精英家教网 > 高中数学 > 题目详情
17.在空间直角坐标系o-xyz中,点A(1,2,2),则|OA|=3,点A到坐标平面yOz的距离是1.

分析 根据空间中两点间的距离公式,求出|OA|的值.利用点A(x,y,z)到坐标平面yoz的距离=|x|即可得出.

解答 解:根据空间中两点间的距离公式,得:|OA|=$\sqrt{{1}^{2}+{2}^{2}+{2}^{2}}$=3.
∵A(1,2,2),
∴点A到平面yoz的距离=|1|=1.
故答案为:3,1

点评 本题考查了空间中两点间的距离公式的应用问题,熟练掌握点A(x,y,z)到坐标平面yoz的距离=|x|是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求与直线5x-3y+3=0平行,且与直线5x-3y+3=0的距离为$\sqrt{17}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,BC⊥平面PAB,PA⊥AB,M为PB中点,PA=AD=2,AB=1.
(1)求证:PD∥面ACM;
(2)求VD-PMC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(sinωx+cosωx)2+$\sqrt{3}$(sin2ωx-cos2ωx),(ω>0)的最小正周期为π.
(1)求ω的值及f(x)的单调递增区间;
(2)在锐角△ABC中,角ABC所对的边分别为abc,f (A)=$\sqrt{3}$+1,a=2,且b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-2cos2$\frac{x}{2}$.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函数f(x)的单调递减区间及对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知正三棱锥V-ABC,底面积为16$\sqrt{3}$,一条侧棱长为2$\sqrt{6}$,计算它的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的多面体PMBCA中,平面PAC⊥平面ABC,△PAC是边长为2的正三角形,PM∥BC,且BC=4,$AB=2\sqrt{5}$.
(1)求证:PA⊥BC;
(2)若多面体PMBCA的体积为$2\sqrt{3}$,求PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=x3+$\sqrt{x}$在点(1,2)处的切线方程为(  )
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

查看答案和解析>>

同步练习册答案