精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

【答案】1)当时,上单递增;当时,上单调递减,上单调递增;(2

【解析】

1)求导,对参数进行分类讨论,根据导数的正负即可容易判断函数单调性;

2)对参数进行分类讨论,根据函数的单调性,结合函数的最值,即可求得结果.

1定义域为

时,上恒成立,此时上单递增;

时,令(舍去)

时,,此时单调递减

时,,此时单调递增

综上:当时,上单递增

时,上单调递减

上单调递增

2)由题意,上恒成立.

①若

,则

上单调递增,成立,

时,成立.

②若时,令

上单调递增﹐即有

,即

要使成立,必有成立.

由(1)可知,时,,又

则必有,得

此时,

恒成立,故上单调递增,

时,成立.

综上,a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为(

A.18B.24C.30D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.

1)求的值及该圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019冠状病毒病(CoronaVirus Disease2019COVID-19))是由新型冠状病毒(2019-nCoV)引发的疾病,目前全球感染者以百万计,我国在党中央、国务院、中央军委的坚强领导下,已经率先控制住疫情,但目前疫情防控形势依然严峻,湖北省中小学依然延期开学,所有学生按照停课不停学的要求,居家学习.小李同学在居家学习期间,从网上购买了一套高考数学冲刺模拟试卷,快递员计划在下午400500之间送货到小区门口的快递柜中,小李同学父亲参加防疫志愿服务,按规定,他换班回家的时间在下午430500,则小李父亲收到试卷无需等待的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F,点,过M的直线与椭圆E交于AB两点,线段AB中点为C,设椭圆EAB两点处的切线相交于点PO为坐标原点.

1)证明:OCP三点共线;

2)已知是抛物线的弦,所在直线过该抛物线的准线与y轴的交点,是弦在两端点处的切线的交点,小明同学猜想:在定直线上.你认为小明猜想合理吗?若合理,请写出所在直线方程;若不合理,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,对任意,都有成立,若函数的图象关于直线对称,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间与极值.

(2)时,是否存在,使得成立?若存在,求实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是椭圆C)的左右顶点,P点为椭圆C上一点,点P关于x轴的对称点为H,且

1)若椭圆C经过了圆的圆心,求椭圆C的标准方程;

2)在(1)的条件下,抛物线D的焦点F与点关于y轴上某点对称,且抛物线D与椭圆C在第四象限交于点Q,过点Q作直线与抛物线D有唯一公共点,求该直线与两坐标轴围成的三角形面积.

查看答案和解析>>

同步练习册答案