甲乙两人拿两颗骰子做投掷游戏,规则如下:若掷出的点数之和为3的倍数,原掷骰子的人再继续掷,否则,由对方接着掷。第一次由甲开始掷。
(1)分别求第二次、第三次由甲掷的概率;
(2)求前4次抛掷中甲恰好掷两次的概率.
(1)第二次由甲投的概率为:,第三次由甲投的概率为:;(2)
解析试题分析:(1)两颗骰子包含的基本事件共有种.
将点数和为3的倍数所有结果一一列出:,,,,,,,,,,,共12种.由此得两骰子点数之和为3的倍数概率为:
由于第一次由甲掷,所以第二次由甲投,则说明第一次甲掷的结果为点数和为3的倍数.
第三次由甲投,则有两种可能,一种是第一、二次都是3的倍数,一种是第一、二次都不是3 的倍数,将这两个事件的概率相加即得第三次由甲投的概率.
(2)求前4次抛掷中甲恰好掷两次共有以下三种结果:甲甲乙乙,甲乙甲乙,甲乙乙甲.在求概率时,只考虑到第三次,因为第三次确定了,第四次由谁投也就确定了.
试题解析:(1)投两颗骰子包含的基本事件为:,,,,共36.
点数和为3的倍数有:,,,,,,,,,,,共12种
两骰子点数之和为3的倍数概率为: 2分
第二次由甲投的概率为:
第三次由甲投的概率为: 6分
(2)求前4次抛掷中甲恰好掷两次的概率为
∴ 12分
考点:古典概型.
科目:高中数学 来源: 题型:解答题
袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出人组成男子篮球队代表所在区参赛,队员来源人数如下表:
学校 | 学校甲 | 学校乙 | 学校丙 | 学校丁 |
人数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
据民生所望,相关部门对所属服务单位进行整治行核查,规定:从甲类3个指标项中随机抽取2项,从乙类2个指标项中随机抽取1项.在所抽查的3个指标项中,3项都优秀的奖励10万元;只有甲类2项优秀的奖励6万元;甲类只有1项优秀、乙类1项优秀的提出警告,有2项或2项以上不优秀的停业运营并罚款8万元.已知某家服务单位甲类3项指标项中有2项优秀,乙类2项指标项中有1项优秀.
求:(1)这家单位受到奖励的概率;
(2)这家单位这次整治性核查中所获金额的均值(奖励为正数,罚款为负数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校举行演讲比赛,高二(12)班有4名男同学和3名女同学都很想参加这次活动,现从中选一名男同学和一名女同学代表本班参赛,求女同学甲参赛的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为贯彻“激情工作,快乐生物”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选—题答—题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数,试写出的分布列,并求的数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.
(Ⅰ)分别求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
男 | | 女 | ||||||
| | 8 | 16 | 5 | 8 | 9 | | |
8 | 7 | 6 | 17 | 2 | 3 | 5 | 5 | 6 |
7 | 4 | 2 | 18 | 0 | 1 | 2 | | |
| | 1 | 19 | 0 | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com