【题目】在平面直角坐标系中,A、B分别为椭圆的上、下顶点,若动直线l过点,且与椭圆相交于C、D两个不同点(直线l与y轴不重合,且C、D两点在y轴右侧,C在D的上方),直线AD与BC相交于点Q.
(1)设的两焦点为、,求的值;
(2)若,且,求点Q的横坐标;
(3)是否存在这样的点P,使得点Q的纵坐标恒为?若存在,求出点P的坐标,若不存在,请说明理由.
【答案】(1)(2);(3)
【解析】
(1)由椭圆方程易知∠OAF2=45°,结合对称性可得∠F1AF2=90°;
(2)设C(x1,y1),D(x2,y2),根据已知条件可求得直线BC的方程为y=2x﹣1,直线AD的方程为y=﹣x+1,联立两直线方程即可得到点Q的横坐标;
(3)设直线l的方程为y=kx+b(k<0,b>1),与椭圆方程联立,可得,直线BC的方程为,直线AD的方程为,进而得到点Q的纵坐标,由此建立方程化简即可得出结论.
解:(1)由椭圆Γ的方程知,F1(﹣1,0),F2(1,0),A(0,1),
则∠OAF2=45°,
∴∠F1AF2=90°;
(2)若b=3,设C、D的两点坐标为C(x1,y1),D(x2,y2),
∵,
∴,即,
而C(x1,y1),D(x2,y2)均在上,
代入得,解得,
∴,分别代入Γ解得,,
∴直线BC的方程为y=2x﹣1,直线AD的方程为y=﹣x+1,
联立,解得,
∴Q点的横坐标为;
(3)假设存在这样的点P,设直线l的方程为y=kx+b(k<0,b>1),
点C,D的坐标为C(x1,y1),D(x2,y2),
联立,得(2k2+1)x2+4kbx+2b2﹣2=0,
由△=16k2b2﹣8(2k2+1)(b2﹣1)>0,得,
由,可得,
直线BC的方程为,直线AD的方程为,
而x1y2=kx1x2+bx1,x2y1=kx1x2+bx2,联立,
得
=,
则b=3>1,因此,存在点P(0,3),使得点Q的纵坐标恒为.
科目:高中数学 来源: 题型:
【题目】年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.
(1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)
(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望
(3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数,近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).
附参考数据与公式:
则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,与均为等腰直角三角形,且,,为上一点,且平面.
(1)求证:;
(2)过作一平面分别交, , 于,,,若四边形为平行四边形,求多面体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距,,,进行统计,作成如图所示的频率分布直方图.
(1)求频率分布直方图中的值和身高在内的人数;
(2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,斜率为的直线与x轴交于点A,与y轴交于点,过作x 轴的平行线,交于点,过作y轴的平行线,交于点,再过作x轴的平行线交于点,…,这样依次得线段、、、、…、、,记为点的横坐标,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在处的切线方程,求实数a,b的值;
(2)若函数在和两处得极值,求实数a的取值范围;
(3)在(2)的条件下,若.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆C: 上一点,点P到椭圆C的两个焦点的距离之和为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线交于点M,
是否存在点A,使得?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求直线的普通方程以及曲线C的参数方程;
(2)过曲线C上任意一点M作与直线的夹角为的直线,交于点N,求的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中,三个内角,,所对的边分别是,,.
(1)证明:;
(2)在①,②,③这三个条件中任选一个补充在下面问题中,并解答
若,,________,求的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com