精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,函数上有三个零点,求实数的取值范围;

2)若常数,且对任何,不等式恒成立,求实数的取值范围.

【答案】1;(2)当时,;当时,;当时,

【解析】

1时,方程有三个解,即函数上有三个交点,结合函数的图象,可得出结论;

2)不等式恒成立,由,可得,令,可知,所以恒成立,只需,分别求出,即可得出答案.

1时,,令,则.

,则

作出的图象,如下图:

时,单调递增;当时,单调递减;当时,单调递增,且.

方程上有三个解,即函数上有三个交点,结合图形可得,解得.

2)由题意,恒成立,

,可得,即,所以

,由,可知,所以恒成立,只需满足.

①因为函数上单调递增,所以

②函数上的单调性为:在上单调递减,在上单调递增.

所以,当,即时,

,即时,

,即时,

综上,当时,;当时,;当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,直角梯形可以通过直角梯形以直线为轴旋转得到,且平面平面.

1)求证:

2)设分别为的中点,为线段上的点(不与点重合).

i)若平面平面,求的长;

ii)线段上是否存在,使得直线平面,若存在求的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论的单调性;

2)当时,证明:

3)求证:对任意正整数,都有(其中,为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,函数上有三个零点,求实数的取值范围;

2)若常数,且对任何,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数\.

1)若处的切线垂直于y轴,求a的值;

2)若对于任意,都有恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的焦点为,以为直角顶点的等腰直角的三个顶点均在抛物线.

1)过作抛物线的切线,切点为,点到切线的距离为2,求抛物线的方程;

2)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合的元素均为实数,若对任意,存在,使得,则称元素个数最少的孪生集;称孪生集孪生集“2级孪生集;称“2级孪生集孪生集“3级孪生集,依此类推……

1)设,直接写出集合孪生集

2)设元素个数为的集合孪生集分别为,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为

3)若,请直接写出级孪生集的个数,及所有级孪生集的并集的元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.

(1)求这次铅球投掷成绩合格的人数;

(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;

(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知ab 两位同学的成绩均为优秀,求ab 两位同学中至少有1人被选到的概率.

查看答案和解析>>

同步练习册答案