精英家教网 > 高中数学 > 题目详情
6.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

分析 (1)先根据z的最大和最小值求得A和B,利用周期求得ω,当x=0时,z=0,进而求得φ的值,则函数的表达式可得;
(2)令f(t)=4sin($\frac{π}{6}t-\frac{π}{6}$)+2=6,)⇒sin($\frac{π}{6}t-\frac{π}{6}$)=1,$\frac{π}{6}t-\frac{π}{6}$=$\frac{5π}{2}$解得t.

解答 解:(1)依题意可知z的最大值为6,最小为-2,∴$\left\{\begin{array}{l}{A+B=6}\\{-A+B=-2}\end{array}\right.∴\left\{\begin{array}{l}{A=4}\\{B=2}\end{array}\right.$,
$\frac{5×2π}{60}\frac{π}{6}$,∴f(t)=4sin($\frac{π}{6}t+$φ)+2,当t=0时,f(t)=0,得sinφ=-$\frac{1}{2}$,φ=-$\frac{π}{6}$,
故所求的函数关系式为f(t)=4sin($\frac{π}{6}t-\frac{π}{6}$)+2,
(2)令f(t)=4sin($\frac{π}{6}t-\frac{π}{6}$)+2=6,)⇒sin($\frac{π}{6}t-\frac{π}{6}$)=1,
$\frac{π}{6}t-\frac{π}{6}$=$\frac{5π}{2}$
得t=16,
故点P第二次到达最高点大约需要16s.

点评 本题主要考查了在实际问题中建立三角函数模型的问题.考查了运用三角函数的最值,周期等问题确定函数的解析式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥S-ABC,E,F分别在线段AB,AC上,EF∥BC,△ABC,△SEF均是等边三角形,且平面SEF⊥平面ABC,若BC=4,EF=a,O为EF的中点.
(1)求证:BC⊥SA.
(2)a为何值时,BE⊥平面SCO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-2,-1),B(2,1),直线AM,BM相交于点M,且它们的斜率之积为-$\frac{1}{2}$,点M的轨迹为曲线H.
(1)求曲线H的方程;
(2)过点P(-2,1)作斜率为k1,k2的两条直线l1,l2分别与曲线H交于C,D两点,且C,D关于原点对称,设点Q(-2,0)到直线l1,l2的距离分别为d1,d2且d1>d2,求k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A、B分别是左焦点为(-4,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,且椭圆C过点P($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$).
(1)求椭圆C的方程;
(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,过P点能否引圆M的切线?若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形面积;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.(  )
A.3B.4C.5D.6、

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点M(2,0),离心率为$\frac{1}{2}$.A,B是椭圆C上两点,且直线OA,OB的斜率之积为-$\frac{3}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求$\frac{|BP|}{|BQ|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

同步练习册答案