【题目】已知向量 =(cos ,﹣1) =( ),设函数f(x)= +1.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)=a在区间[0,π]上有实数解,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为 (球的体积公式为 R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在L上的投影为N,则 的最大值是( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数f(x)对任意的实数x,都有f(1+x)=f(﹣x),且当x≥ 时,f(x)=log2(3x﹣1),那么函数f(x)在[﹣2,0]上的最大值与最小值之和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( )x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( )t+1 , ( )t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线 (a为参数),直线l:x﹣y﹣6=0.
(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(2)过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为2,点P为面ADD1A1的对角线AD1的中点.PM⊥平面ABCD交AD与M,MN⊥BD于N.
(1)求异面直线PN与A1C1所成角的大小;(结果可用反三角函数值表示)
(2)求三棱锥P﹣BMN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=mlnx(m∈R),g(x)=cosx.
(1)若函数 在(1,+∞)上单调递增,求m的取值范围;
(2)设函数φ(x)=f(x)+g(x),若对任意的 ,都有φ(x)≥0,求m的取值范围;
(3)设m>0,点P(x0 , y0)是函数f(x)与g(x)的一个交点,且函数f(x)与g(x)在点P处的切线互相垂直,求证:存在唯一的x0满足题意,且 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=2,点列Pn(n=1,2,…)在△ABC内部,且△PnAB与△PnAC的面积比为2:1,若对n∈N*都存在数列{bn}满足 ,则a4的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com