精英家教网 > 高中数学 > 题目详情
9.若关于x的方程mx2+2x+1=0至少有一个负根,则实数m的取值范围是(-∞,1].

分析 分类讨论,一个负根和两个负根,即可得出结论.

解答 解:m=0时,方程为2x+1=0,有一个负根,
m≠0时,mx2+2x+1=0为一元二次方程,
关于x的方程mx2+2x+1=0至少有一个负根,设根为x1,x2
当△=4-4m=0时,即m=1时,方程为x2+2x+1=0,解得x=-1,满足题意,
当△=4-4m>0,即m<1时,且m≠0时,
若有一个负根,则x1x2=$\frac{1}{m}$<0,解得m<0,
若有两个负根,则$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{2}{m}<0}\\{{x}_{1}{x}_{2}=\frac{1}{m}>0}\end{array}\right.$,解得0<m<1,
综上所述,则实数m的取值范围是(-∞,1],
故答案为:(-∞,1].

点评 本题考查一元二次方程的根的分布与系数的关系,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设全集U={(x,y)|y=x+1,x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},则∁UM={(2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知曲线f(x)=$\frac{2}{3}$x3-x2+ax-1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为(3,$\frac{7}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$a=-\frac{1}{2}$是函数f(x)=ln(ex+1)+ax为偶函数的充要条条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=c(c为椭圆的半焦距),则椭圆的离心率是$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}、{bn}的前n项和分别为Sn,Tn,若对于任意的正整数n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,则$\frac{{a}_{9}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{3}}{{b}_{4}+{b}_{8}}$=(  )
A.$\frac{19}{41}$B.$\frac{9}{7}$C.$\frac{3}{7}$D.$\frac{40}{59}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知空间四边形OABC各边及对角线长都相等,E,F分别为AB,OC的中点,求0E与BF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a≤x≤a+3},B={x|x≤-1或x≥3},
(1)若A∩B=∅,求实数a的范围;
(2)若A⊆B,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,∠C>90°,若函数f(x)在区间[0,1]上是增函数,则下列关系式正确的是(  )
A.f(cosA)>f(cosB)B.f(sinA)>f(sinB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

同步练习册答案