已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)
(Ⅰ)的单调递减区间是和,单调递增区间是;(Ⅱ);
(Ⅲ)当时,最小值为;当时,的最小值=;当时,最小值为.
【解析】
试题分析:(Ⅰ)根据函数求解导数,然后令导数大于零或者小于零得到单调区间;
(Ⅱ)根据给定的切线方程得到切点的坐标,进而得到参数的值;
(Ⅲ)对于函数的最值问题,根据给定的函数,求解导数,运用导数的符号判定单调性,和定义域结合得到最值.
试题解析:(Ⅰ),(), 2分
在区间和上,;在区间上,.
所以,的单调递减区间是和,单调递增区间是. 4分
(Ⅱ)设切点坐标为,则 6分(1个方程1分)
解得,. 7分
(Ⅲ),
则, 8分
解,得,
所以,在区间上,为递减函数,
在区间上,为递增函数. 9分
当,即时,在区间上,为递增函数,
所以最小值为. 10分
当,即时,在区间上,为递减函数,
所以最小值为. 11分
当,即时,最小值
=.
综上所述,当时,最小值为;当时,的最小值=;当时,最小值为. 12分
考点:1.用导数处理函数的单调区间和函数的最值;2.求曲线在某点的切线方程
科目:高中数学 来源: 题型:
(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。
(1)求c的值;
(2)设的两个极值点,且的取值范围;
(3)在(2)的条件下,求b的最大值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题
已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题
已知函数(其中是实数常数,)
(1)若,函数的图像关于点(—1,3)成中心对称,求的值;
(2)若函数满足条件(1),且对任意,总有,求的取值范围;
(3)若b=0,函数是奇函数,,,且对任意时,不等式恒成立,求负实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com