精英家教网 > 高中数学 > 题目详情
7.在△ABC中,已知sinA-cosA=$\frac{{\sqrt{2}}}{2}$,AC=2,AB=4,求角A的度数和△ABC的面积.

分析 由两角差的正弦公式化简$sinA-cosA=\frac{{\sqrt{2}}}{2}$,由A的范围和特殊角的三角函数值求出角A的度数;利用两角和的正弦公式求出sianA,代入三角形的面积公式求出△ABC的面积.

解答 解:由题意得,$sinA-cosA=\frac{{\sqrt{2}}}{2}$,
∴$\sqrt{2}sin(A-\frac{π}{4})=\frac{\sqrt{2}}{2}$,则$sin(A-\frac{π}{4})=\frac{1}{2}$,
∵0<A<π,∴$A-\frac{π}{4}=\frac{π}{6}$,则A=$\frac{5π}{12}$,
∴sin$\frac{5π}{12}$=sin($\frac{π}{4}+\frac{π}{6}$)=$\frac{\sqrt{2}}{2}(\frac{1}{2}+\frac{\sqrt{3}}{2})$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∵AC=2,AB=4,
∴△ABC的面积S=$\frac{1}{2}•AC•ABsinA$=$\frac{1}{2}×2×4×\frac{\sqrt{6}+\sqrt{2}}{4}$
=$\sqrt{6}+\sqrt{2}$,
综上,角A的度数是$\frac{5π}{12}$;△ABC的面积是$\sqrt{6}+\sqrt{2}$.

点评 本题考查两角和与差的正弦公式,三角形的面积公式,注意内角的范围,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.$\frac{7}{6}$cm3B.$\frac{4}{3}$cm3C.$\frac{3}{2}$cm3D.2cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1是A1C1和B1D1的交点.
(1)若正四棱柱的高与底面边长相等,求二面角A-B1D1-A1的大小(结果用反三角函数值表示);
(2)若点C到平面AB1D1的距离为$\frac{4}{3}$,求正四棱柱ABCD-A1B1C1D1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知m,x∈R,向量$\overrightarrow{a}$=(x,m),$\overrightarrow{b}$=(m+1,1).
(1)若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|(m>0),求实数x的取值范围;
(2)当m∈[-1,1]时,$\overrightarrow{a}$$•\overrightarrow{b}$≤0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinx+cosx=$\frac{1}{5}$,(-$\frac{π}{2}$<x<0),求$\frac{3si{n}^{2}\frac{x}{2}-2cos\frac{x}{2}sin\frac{x}{2}+co{s}^{2}\frac{x}{2}}{sinx-cosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线(1+a2)x-y+2=0的倾斜角的取值范围是(  )
A.[0,$\frac{3π}{4}$]B.[0,$\frac{π}{4}$]C.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,$\frac{3π}{4}$]D.[$\frac{π}{4}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.现要完成下列3项抽样调查:
①从15件产品中抽取3件进行检查;
②某公司共有160名员工,其中管理人员16名,技术人员120名,后勤人员24名,为了了解员工对公司的意见,拟抽取一个容量为20的样本;
③电影院有28排,每排有32个座位,某天放映电影《英雄》时恰好坐满了观众,电影放完后,为了听取意见,需要请28名观众进行座谈.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①分层抽样,②系统抽样,③简单随机抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①简单随机抽样,②分层抽样,③系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos330°等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,E是A1C1与B1D1的交点,AB=BC=$\sqrt{2}$,AA1=1.
(1)求证:AE∥平面C1BD;
(2)求证:CE⊥平面C1BD;
(3)求二面角A-BC1-D的大小.

查看答案和解析>>

同步练习册答案