精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx在点x0处取得极小值-4,使其导数f'(x)>0的x的取值范围为(1,3),求:
(1)f(x)的解析式;
(2)x∈[2,3],求g(x)=f'(x)+6(m-2)x的最大值.
分析:(1)根据导数f'(x)>0的x的取值范围为(1,3),即可得到b,c用a来表示,利用f′(x)即可得出单调性,再根据f(x)在点x0处取得极小值-4,即可得到a;
(2)利用(1)即可得到g(x)的解析式,通过对m分类讨论,利用二次函数的单调性即可得出最值.
解答:解:(1)∵f′(x)=3ax2+2bx+c>0的x的取值范围为(1,3),
a<0
-
2b
3a
=1+3
c
3a
=1×3
,∴b=-6a,c=9a,
∴f′(x)=3ax2-12ax+9a=3a(x2-4x+3)=3a(x-1)(x-3),
令f′(x)>0,解得1<x<3;令f′(x)<0,解得x>3,或x<1.
列表如下:
由表格可知:函数f(x)在x=1处取得极小值,∴f(1)=-4,即a-6a+9a=-4,解得a=-1.
∴f(x)=-x3+6x2-9x.
(2)由(1)可得:g(x)=-3x2+12x-9+6(m-2)x
=-3x2+6mx-9
=-3(x-m)2+3m2-9.
①当2≤m≤3时,函数g(x)在区间[2,3]上有:g(x)max=g(m)=-3(m2-2m2+3)=3m2-9.
②当m<2时,g(x)在[2,3]上单调递减,∴g(x)max=g(2)=12m-21.
③当m>3时,g(x)在[2,3]上单调递增,∴g(x)max=g(3)=18m-36.
点评:熟练掌握利用导数研究函数的单调性、极值与最值、二次函数的单调性、分类讨论思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案