精英家教网 > 高中数学 > 题目详情
14.命题“?x0∈R,x0+1<0或x02-x0>0”的否定形式是(  )
A.?x0∈R,x0+1≥0或$x_0^2-{x_0}≤0$B.?x∈R,x+1≥0或x2-x≤0
C.?x0∈R,x0+1≥0且$x_0^2-{x_0}≤0$D.?x∈R,x+1≥0且x2-x≤0

分析 直接利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x0∈R,x0+1<0或$x_0^2-{x_0}>0$”的否定形式是:?x∈R,x+1≥0且x2-x≤0.
故选:D.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求函数y=3x2-6x-9在[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax2-2lnx;
(1)若a=2,求函数f(x)在点(1,f(1))处的切线方程;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对的边分别为a,b,c,且满足$\frac{c-b}{a-b}$=$\frac{sinA+sinB}{sinC}$.
(1)求角A;
(2)若cosB=$\frac{\sqrt{6}}{3}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$a=ln\frac{5}{2},b={log_3}\frac{9}{10},c={π^{0.1}}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b为实数,则(  )
A.(a+b)2≤4ab,$a+b≤\sqrt{2{a^2}+2{b^2}}$B.(a+b)2≥4ab,$a+b≤\sqrt{2{a^2}+2{b^2}}$
C.(a+b)2≤4ab,$a+b≥\sqrt{2{a^2}+2{b^2}}$D.(a+b)2≥4ab,$a+b≥\sqrt{2{a^2}+2{b^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设△ABC的内角A,B,c的对边分别为a,b,c,A=$\frac{π}{6}$.
(1)若B=$\frac{π}{4}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x≥0,x2+x-1<0”的否定是“?x<0,x2+x-1<0”
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.若命题p为真命题,则命题¬p也可能为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$y=f(x)=2cos(2x-\frac{π}{6})+\sqrt{3}$,求:
(1)单调增区间、对称中心;
(2)当$x∈(-\frac{π}{4},\frac{π}{6})$时,求f(x)值域;
(3)当x∈[-π,π]时,解不等式y≥0.

查看答案和解析>>

同步练习册答案