精英家教网 > 高中数学 > 题目详情

已知f(x)=,在区间[0,2]上任取三个数,均存在以 为边长的三角形,则的取值范围是(     )

A.           B.          C.            D.

【解析】由得到(舍去)所以函数在区间单调递减,在区间单调递增,则

由题意知,                        ①

,得到  ②

由①②得到m>6为所求。因此选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•海珠区二模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为(-
13
,1)
,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)已知函数f(x)=alnx-2ax+3(a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)函数y=f(x)的图象在x=2处的切线的斜率为
3
2
,若函数g(x)=
1
3
x3+x2[f(x)+m]
,在区间(1,3)上不是单调函数,求 m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•青浦区一模)在平面直角坐标系xoy中,已知圆C的圆心在第二象限,半径为2
2
且与直线y=x相切于原点O.椭圆
x2
a2
+
y2
9
=1
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)圆C上是否存在点Q,使O、Q关于直线CF(C为圆心,F为椭圆右焦点)对称,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知f(x)=3x2-x+m,(x∈R),g(x)=lnx
(1)若函数 f(x)与 g(x)的图象在 x=x0处的切线平行,求x0的值;
(2)求当曲线y=f(x)与y=g(x)有公共切线时,实数m的取值范围;并求此时函数F(x)=f(x)-g(x)在区间
13
 , 1 ]
上的最值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•青浦区一模)已知f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3
ak
-x)≥2k+3(k∈N*)
整数解的个数,求g(k);
(3)在(2)的条件下,试求一个数列{bn},使得
lim
n→∞
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+…
1
g(n)g(n+1)
bn]=
1
5

查看答案和解析>>

同步练习册答案