精英家教网 > 高中数学 > 题目详情
13.在平面直角坐标系xoy中,已知直线l:ax+y+3=0,点A(0,2),若直线l上存在点M,满足|MA|2+|MO|2=10,则实数a的取值范围是{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

分析 设M(x,-ax-3),由已知条件利用两点间距离公式得x2+(-ax-5)2+x2+(-ax-3)2=10,由此利用根的判别式能求出实数a的取值范围.

解答 解:设M(x,-ax-3),
∵直线l:ax+y+3=0,点A(0,2),直线l上存在点M,满足|MA|2+|MO|2=10,
∴x2+(-ax-5)2+x2+(-ax-3)2=10,
整理,得(a2+1)x2+8ax+12=0,
∵直线l上存在点M,满足|MA|2+|MO|2=10,
∴(a2+1)x2+8ax+12=0有解,
∴△=(8a)2-4×12×(a2+1)>0,
解得a$≤-\sqrt{3}$,或a$≥\sqrt{3}$.
故答案为:{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意两点间距离公式和一元二次方程式根的判别式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合M={y|y=sinx},N={x|x2-4≤0},则M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b=(  )
A.-2或12B.2或-12C.-2或-12D.2或12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的图象如图.
(Ⅰ)求c,d的值;
(Ⅱ)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;
(Ⅲ)若x0=5,方程f(x)=8a有三个不同的根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若实数a满足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)设函数f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),对于一切正整数n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)设函数φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函数g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),试判断g(1.2),g(2.5),g(t)的大小关系.(请按由大到小的顺序排)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小明一家三口都会下棋,在假期里的每一天中,父母都交替与小明下棋,已知小明胜父亲的概率是$\frac{1}{2}$,胜母亲的概率是$\frac{2}{3}$,且各盘棋之间是相互独立的.
(1)如果共下7盘棋,并且小明与父亲先下,求小明恰胜一盘的概率;
(2)如果共下3盘棋,小明与父亲先下,且规定每胜一盘得1分,每负一盘减1分,求小明最终得分ξ的分布列;
(3)某天父母与小明约定下三盘棋,只要他在三盘中能至少连胜两盘,就给他买新的钢笔,那么小明为了获胜希望更大,他应该先与父亲下,还是先与母亲下?请用计算说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,三棱锥P-ABC中,△PAB是正三角形,E是AB的中点,AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,则点A到平面PEC的距离是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案