精英家教网 > 高中数学 > 题目详情

已知数列{an}满足a1=数学公式,an=数学公式(n≥2,n∈N).
(1)试判断数列数学公式是否为等比数列,并说明理由;
(2)设bn=数学公式,求数列{bn}的前n项和Sn
(3)设cn=ansin数学公式,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn数学公式

解:(1)∵

又∵
∴数列是首项为3,公比为-2的等比数列.
(2)依(1)的结论有

bn=(3•2n-1+1)2=9•4n-1+6•2n-1+1.

(3)∵

当n≥3时,

=
∵T1<T2<T3
∴对任意的n∈N*
分析:(1)根据题意,对进行变形可得,从而证得结论;
(2)根据(1)求出数列an,从而求得bn,利用分组求和法即可求得结果;
(3)首先确定出数列{cn}的通项公式,利用放缩的思想将数列的每一项进行放缩,转化为特殊数列的求和问题达到证明不等式的目的.
点评:本题考查数列的递推公式确定数列的思想,根据递推公式确定出数列是否满足特殊数列的定义,考查学生的转化与化归思想.第(3)问考查学生的不等式放缩的技巧与方法,关键要将数列{cn}的每一项进行放缩转化为特殊数列从而达到求和证明的目的,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案