精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=|2x-1|-|2x-2|,且f(x)的最大值记为k.
(Ⅰ)求不等式f(x)≥x的解集;
(Ⅱ)是否存在正数a、b,同时满足a+2b=k,$\frac{2}{a}$+$\frac{1}{b}$=4-$\frac{1}{ab}$?请说明理由.

分析 (Ⅰ)通过讨论x的范围,求出不等式组的解集取并集即可;(Ⅱ)求出k=1,得到a+2b=1,结合基本不等式的性质判断即可.

解答 解:(Ⅰ)不等式f(x)≥x,
即为|2x-1|-|2x-2|-x≥0,
∴$\left\{\begin{array}{l}{x≤\frac{1}{2}}\\{1-2x+2x-2-x≥0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{2}<x<1}\\{2x-1+2x-2-x≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x≥1}\\{2x-1-2x+2-x≥0}\end{array}\right.$,
解得:x≤-1或x∈∅或x=1,
综上,不等式的解集是{x|x≤-1或x=1};
(Ⅱ)f(x)=|2x-1|-|2x-2|≤|2x-1-2x+2|=1,
当且仅当x≥1时取“=”,
故k=1,
假设存在符合条件的正数a,b,则a+2b=1,
$\frac{2}{a}$+$\frac{1}{b}$+$\frac{1}{ab}$=$\frac{2}{a}$+$\frac{1}{b}$+$\frac{a+2b}{ab}$=2($\frac{2}{a}$+$\frac{1}{b}$)=8+$\frac{8b}{a}$+$\frac{2a}{b}$≥8+2$\sqrt{\frac{8b}{a}•\frac{2a}{b}}$=16,
当且仅当a=$\frac{1}{2}$,b=$\frac{1}{4}$时取“=”号,
∴$\frac{2}{a}$+$\frac{1}{b}$+$\frac{1}{ab}$的最小值是16,
即$\frac{2}{a}$+$\frac{1}{b}$≥16-$\frac{1}{ab}$>4-$\frac{1}{ab}$,
∴不存在正数a、b,同时满足a+2b=k,$\frac{2}{a}$+$\frac{1}{b}$=4-$\frac{1}{ab}$同时成立.

点评 本题考查了解绝对值不等式问题,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,S9=36,则a5=(  )
A.3B.4C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=|2x-1|+|2x+1|(x∈R).
(1)求不等式f(x)<4的解集M;
(2)若a∈M,b∈M,求证:|$\frac{a+b}{1+ab}$|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos2x+2sinx+2的图象的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}{lg(|x|-1),|x|>1}\\{asin(\frac{π}{2}x),|x|≤1}\end{array}\right.$.关于x的方程f2(x)-(a+1)f(x)+a=0,给出下列结论,其中正确的有①②③(填出所有正确结论的序号)
①存在这样的实数a,使得方程有3个不同的实根;
②不存在这样的实数a,使得方程有4个不同的实根;
③存在这样的实数a,使得方程有5个不同的实根;
④不存在这样的实数a,使得方程有6个不同的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为3-2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解答题
$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}In(1+{t}^{2})dt}{{x}^{2}sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{{{(1+cos2x)}^2}-2cos2x-1}}{{sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)}}$.
(1)求f(-$\frac{11π}{12}$)的值;
(2)当x∈[0,$\frac{π}{4}$)时,求g(x)=$\frac{1}{2}$f(x)+sin2x的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinα═$\frac{3}{5}$,求:$\frac{sin(-α-\frac{3π}{2})•sin(\frac{3π}{2}-α)•ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)•co{s}^{2}(π-α)}$的值.

查看答案和解析>>

同步练习册答案