精英家教网 > 高中数学 > 题目详情
已知公差不为0的等差数列{an}的前n项和为Sn,若a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,则S9=
0
0
分析:先将条件a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,利用平方差公式进行转化,然后利用等差数列的性质求出
解答:解:因为a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,所以
a
2
8
-
a
2
3
+
a
2
7
-
a
2
2
=0

即(a8-a3)(a8+a3)+(a7-a2)(a7+a2)=0,
所以5d(a8+a3+a7+a2)=0,因为公差不为0,
所以a8+a3+a7+a2=0,即2(a1+a9)=0,
所以a1+a9=0.
所以S9=
9(a1+a9)
2
=0

故答案为:0
点评:本题主要考查等差数列的性质以及等差数列的前n项和,要求熟练掌握等差数学的性质以及求和公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k为大于0的常数.
(1)求数列{an},{bn}的通项公式;
(2)记数列an+bn的前n项和为Tn,若当且仅当n=3时,Tn取得最小值,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区二模)已知公差不为0的等差数列{an}的前n项和为Sn,S3=a4+6,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
1Sn
}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知公差不为0的等差数列{an}满足a1,a3,a4成等比数列,Sn为{an}的前n项和,则
S2-S1
S3-S2
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式和前n项和Sn
(2)设Tn为数列{
1anan+1
}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=a,a∈N*,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

同步练习册答案