【题目】若存在两个正实数x、y,使得等式x+a(y﹣2ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围为 .
【答案】a<0或a≥
【解析】解:由x+a(y﹣2ex)(lny﹣lnx)=0得x+a(y﹣2ex)ln =0, 即1+a( ﹣2e)ln =0,
即设t= ,则t>0,
则条件等价为1+a(t﹣2e)lnt=0,
即(t﹣2e)lnt= 有解,
设g(t)=(t﹣2e)lnt,
g′(t)=lnt+1﹣ 为增函数,
∵g′(e)=lne+1﹣ =1+1﹣2=0,
∴当t>e时,g′(t)>0,
当0<t<e时,g′(t)<0,
即当t=e时,函数g(t)取得极小值,为g(e)=(e﹣2e)lne=﹣e,
即g(t)≥g(e)=﹣e,
若(t﹣2e)lnt= 有解,
则 ≥﹣e,即 ≤e,
则a<0或a≥ ,
所以答案是:a<0或a≥ .
科目:高中数学 来源: 题型:
【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入),问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:
(1)已知与之间具有线性相关关系,求关于的线性回归方程;
(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.
参考公式: ,
参考数据: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣4x+3,g(x)=m(x﹣1)+2(m>0),若存在x1∈[0,3],使得对任意的x2∈[0,3],都有f(x1)=g(x2),则实数m的取值范围是( )
A.
B.(0,3]
C.
D.[3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足Sn=2n﹣an(n∈N*). (Ⅰ)计算a1 , a2 , a3 , a4 , 并由此猜想通项公式an;
(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线f(x)= (x>0)上有一点列Pn(xn , yn)(n∈N*),过点Pn在x轴上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn , 求Sn;
(3)在(2)条件下,求证: + +…+ <4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点.
(1)证明:直线NA,NB的斜率互为相反数;
(2)求△ANB面积的最小值;
(3)当点M的坐标为(m,0),(m>0且m≠1).根据(1)(2)推测:△ABC面积的最小值是多少?(不必说明理由)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(1+x)﹣ . (Ⅰ)若a=2,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)≥0对x∈(﹣1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com