精英家教网 > 高中数学 > 题目详情

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

【答案】(1)答案见解析;(2) (3)中度高血压人群.

【解析】试题分析:(1将数据对应描点,即得散点图,2先求均值,再代人公式求,利用,(3根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.

试题解析:(1)

(2)

∴回归直线方程为.

3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为mmHg

∴收缩压为180mmHg的70岁老人为中度高血压人群.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的最大值;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆的右焦点F作直线交椭圆于MN两点,H为线段MN的中点,且OH的斜率为,设点

求该椭圆的方程;

若点P是椭圆上的动点,求线段PA的中点G的轨迹方程;

过原点的直线交椭圆于BC两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,为了打赢疫情防控阻击战,我们执行了延长假期政策,在延长假期面前,我们停课不停学,河南省教育厅组织部分优秀学校的优秀教师录播《名师同步课堂》,我校高一年级要在甲、乙、丙、丁、戊5位数学教师中随机抽取3人参加录播课堂,则甲、乙两位教师同时被选中的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。

(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;

(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,

恒有f(x)>g(x)成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)有物理、化学、生物三个学科竞赛各设冠军一名,现有人参赛可报任意学科并且所报学科数不限,则最终决出冠军的结果共有多少种可能?

(2)有个数,从中取个数排成一个五位数,要求奇数位上只能是奇数,则共可排成多少个五位数?

(3)有个数,从中取个数排成一个五位数,要求奇数只在奇数位上,则共可排成多少个五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为4E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

同步练习册答案