精英家教网 > 高中数学 > 题目详情

【题目】已知点是函数的图象上的一点,等比数列的前项和为,数列的首项为,且前项和满足:.

1)求数列的通项公式;

2)若数列的通项,求数列的前项和

3)若数列的前项和为,是否存在最大的整数,使得对任意的正整数n,均有总成立?若成立,求出t;若不存在,请说明理由.

【答案】1;(2;(3)存在最大的整数,使得对任意的正整数n,均有总成立

【解析】

1)先求出,然后求出,利用数列为等比数列,可求得,从而可求得数列的通项公式;利用,可求得数列是一个首项为1公差为1的等差数列,从而可求得的通项公式,进而可得的通项公式;

2)利用错位相减法求数列的前项和;
3)利用裂项法知,,于是可求得,可得不等式恒成立,转化为最值求得的范围,进而可得最大的整数

解:(1,故


又数列为等比数列,
,又公比




数列构成一个首项为1公差为1的等差数列,
,于是

2)由(1)知,

两式相减得:

         

         


3

因为总成立,即总成立,

对任意的正整数n均成立,

,得

故存在最大的整数,使得对任意的正整数n,均有总成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知矩形,将沿矩形的对角线所在的直线进行翻折,在翻折过程中,则( ).

A. 时,存在某个位置,使得

B. 时,存在某个位置,使得

C. 时,存在某个位置,使得

D. 时,都不存在某个位置,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 曲线的极坐标方程为交于点.

1)写出曲线的普通方程及直线的直角坐标方程,并求

2)设为曲线上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四面体中,,且两两互相垂直,点的中心.

1)求二面角的大小(用反三角函数表示);

2)过,垂足为,求绕直线旋转一周所形成的几何体的体积;

3)将绕直线旋转一周,则在旋转过程中,直线与直线所成角记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为,且过点.

(1)求双曲线的方程;

(2)若点M(3m)在双曲线上,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为为参数),交于两点

(1) 求的直角坐标方程和的普通方程;

(2) 若,,成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n为平面α外两条直线,其在平面α内的射影分别是两条直线m1和n1,给出下列4个命题:①m1∥n1m∥n;②m∥nm1与n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围分组,得到的频率分布直方图如图:

(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)若对得分在前的学生进行校内奖励,估计获奖分数线;

(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?

成绩良好

成绩一般

合计

男生

女生

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案