精英家教网 > 高中数学 > 题目详情
(2010•马鞍山模拟)已知函数f(x)=lg(ax-bx)中,常数a,b满足a>1>b>0,且a2=b2+1,那么函数f(x)>0的解集为(  )
分析:令u(x)=ax-bx,利用定义判断u(x)在x∈(0,+∞)上单调增,从而得到f(x)在x∈(0,+∞)上单调增,由a2=b2+1,可得f(2)=lg(a2-b2)=lg1=0,进而得到f(x)>0=f(2).
解答:解:由题意可得:令u(x)=ax-bx,不等式即 lgu(x)>0,
∵a>1>b>0,
所以u(x)在实数集上是个增函数,且u(x)>0,
又因为u(0)=0,
所以应有  x>0,
∴u(x)在定义域(0,+∞)上单调增,
∴f(x)=lg(ax-bx)在x∈(0,+∞)上单调增.
又因为a2=b2+1,
所以f(2)=lg(a2-b2)=lg1=0,
所以f(x)>0=f(2)
所以(2,+∞).
故选C.
点评:本题考查指数函数、对数函数的单调性与特殊点,由真数u(x)的单调性确定f(x)的单调性,利用特殊点lg1=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出30个数:1,2,4,7,11,…,其规律是第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.如图是计算这30个数和的程序框图,则图中(1)、(2)应分别填上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)以平面直角坐标系的原点为极点,x轴的非负半轴为极轴,并且两种坐标系的长度单位相同.已知直线的极坐标方程为ρcosθ-ρsinθ+2=0,则它与曲线
x=sinα+cosα
y=1+sin2α
(α为参数)的交点的直角坐标是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)
x
0
(1-t)3dt
的展开式中x的系数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)已知函数f(x)=lg(ax-bx)中,常数a,b满足a>1>b>0,且a-b=1,那么函数f(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)已知全集U=R,集合S={x|x2-x≤0},集合T={y|y=2x,x≤0},则S∩CUT等于(  )

查看答案和解析>>

同步练习册答案