精英家教网 > 高中数学 > 题目详情
设a,b为正实数,下列结论正确的是(  )
①若a2-b2=1,则a-b<1;        
②若
1
b
-
1
a
=1
,则a-b<1;
③若|
a
-
b
|=1
,则|a-b|<1;  
④若|a3-b3|=1,则|a-b|<1.
分析:①将a2-b2=1,分解变形为(a+1)(a-1)=b2,即可证明a-1<b,即a-b<1;②③可通过举反例的方法证明其错误性;④若a>b,去掉绝对值,将a3-b3=1分解变形为(a-1)(a2+1+a)=b3,即可证明a-b<1,同理当a<b时也可证明b-a<1,从而命题④正确.
解答:解:①若a2-b2=1,则a2-1=b2,即(a+1)(a-1)=b2
∵a+1>a-1,∴a-1<b,即a-b<1,①正确; ②若若
1
b
-
1
a
=1
,可取a=7,b=
7
8
,则a-b>1,∴②错误;
③若若|
a
-
b
|=1
,则可取a=9,b=4,而|a-b|=5>1,∴③错误;
④由|a3-b3|=1,
若a>b,则a3-b3=1,即a3-1=b3,即(a-1)(a2+1+a)=b3
∵a2+1+a>b2,∴a-1<b,即a-b<1
若a<b,则b3-a3=1,即b3-1=a3,即(b-1)(b2+1+b)=a3
∵b2+1+b>a2,∴b-1<a,即b-a<1
∴|a-b|<1∴④正确;
所以正确的答案为①④.
故选D.
点评:本题主要考查了不等式的证明方法,间接证明和直接证明的方法,放缩法和举反例法证明不等式,演绎推理能力,有一定难度,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选做题)在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
3
,OA=
3
OM,求MN的长.
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
.
1a
b1
.
的作用下变换为曲线x2-2y2=1,求实数a,b的值;
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
y=-1-
3
5
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲
如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:
B.选修4—2 矩阵与变换
在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。
C.选修4—4 参数方程与极坐标
在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
D.选修4—5 不等式证明选讲
abc为正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

 

查看答案和解析>>

同步练习册答案