精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】试题分析:求导后,代入 取得极值,从而计算出的值,并进行验证(2)由函数有两个极值点算出,继而算出,不等式转化为,构造新函数,分类讨论时三种情况,从而计算出结果

解析:(Ⅰ) ,则

检验

所以 为增函数

为减函数所以为极大值点

(Ⅱ)定义域为有两个极值点上有两个不等正根

所以所以

.所以所以

这样原问题即 成立

所以上为增函数且

所以 不合题意舍去.

同①舍去

(ⅰ)时可知为减函数且

这样

这样成立

(ⅱ)分子中的一元二次函数的对称轴开口向下1的函数值为

为增函数

所以 故舍去

综上可知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知对任意的x∈R,3a(sinx+cosx)+2bsin2x≤3(a,b∈R)恒成立,则当a+b取得最小值时,a的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某工厂两车间工人掌握某技术情况,现从这两车间工人中分别抽查名和名工人,经测试,将这名工人的测试成绩编成的茎叶图若成绩在以上(包括)定义为“良好,成绩在以下定义为“合格”。已知车间工人的成绩的平均数为车间工人的成绩的中位数为.

(1)求,的值

(2)求车间工人的成绩的方差;

(3)在这名工人中,用分层抽样的方法从 “良好”和“及格”中抽取再从这人中选人,求至少有一人为“良好”的概率

参考公式:方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线交于两点,

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若轴上存在点,当变动时,总有,试求出坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=(
A.1991
B.2000
C.2007
D.2008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=2px(p>0)的焦点F的直线l与抛物线交于BC两点,l与抛物线的准线交于点A,且|AF|=6,=2

(1)求抛物线方程.

(2)求|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;
(2)若a≥1,证明:x1 , x2∈(0,+∞),且x1≠x2 , 都有 >14成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据以上数据完成下面的2×2列联表:

主食 蔬菜

主食 肉类

总计

50岁以下

50岁以上

总计

(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.

附参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( ax , a为常数,且函数的图象过点(﹣1,2).
(1)求a的值;
(2)若g(x)=4x﹣2,且g(x)=f(x),求满足条件的x的值.

查看答案和解析>>

同步练习册答案