精英家教网 > 高中数学 > 题目详情

【题目】为了调查某厂工人生产某件产品的效率,随机抽查了100名工人某天生产该产品的数量,所取样本数据分组区间为由此得到如图所示频率分布直方图.

1)求的值并估计该厂工人一天生产此产品数量的平均值;

2)从生产产品数量在的四组工人中,用分层抽样方法抽取13人,则每层各应抽取多少人?

【答案】(1);57.35;(2)6人,4人,2人,1人.

【解析】

(1)由长方形的面积和为1,可求的值.求出各长方形的面积与中点积的和即为平均值.

(2)100与四组频率之积,即可分别求出四组分别有多少人,结合总的抽取人数,即可求出每组抽取的人数.

解:(1)由于小矩形的面积之和为1,则

由此可得.该厂工人一天生产此产品数量的平均值

.

(2)生产产品数量在的工人有人,

生产产品数量在的工人有人,

生产产品数量在的工人有人,

生产产品数量在的工人有人.

则四组工人抽取人数分别为人,人,

人,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若p为假命题,则pq均为假命题;②命题a>b,则的否命题为ab,则;③xR的否定是;④在ABC中,A>B的充要条件;其中正确的命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数浓度,制定了空气质量标准:

空气污染质量

空气质量等级

轻度污染

中度污染

重度污染

严重污染

某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016111日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).

1)某人计划11月份开车出行,求因空气污染被限号出行的概率;

2)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行三年来的11月份共90天的空气质量进行统计,其结果如表:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

16

39

18

10

5

2

根据限行前180天与限行后90天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.

空气质量优良

空气质量污染

合计

限行前

限行后

合计

参考数据:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数处的切线方程为,函数

1)求函数的解析式;

2)求函数的极值;

3)设表示pq中的最小值),若上恰有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知椭圆C的离心率为,且点在椭圆C.椭圆C的左顶点为A.

1)求椭圆C的方程

2)椭圆的右焦点且斜率为的直线与椭圆交于PQ两点,求三角形APQ的面积;

3)过点A作直线与椭圆C交于另一点B.若直线轴于点C,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每逢节日,电商之间的价格厮杀已经不是什么新鲜事,今年的618日也不例外.某电商在618日之后,随机抽取100名顾客进行回访,按顾客的年龄分成6组,得到如下频数分布表:

顾客年龄

频数

4

24

32

20

16

4

1)在下表中作出这些数据的频率分布直方图;

2)用分层抽样的方法从这100名顾客中抽取25人,再从抽取的25人中随机抽取2人,求年龄在内的顾客人数的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,在新高考改革中,打破文理分科的“”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定省规定:选考科目按考生成绩从高到低排列,按照占总体分别赋分分、分、分、分,为了让学生们体验赋分制计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如图所示,小明同学在这次考试中物理分,化学多分.

(1)采用赋分制后,求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点

1)求椭圆的标准方程;

2)设直线交于两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程是t是参数).在以O为极点,x轴正半轴为极轴的极坐标系中,曲线.

1)当时,求直线l与曲线C的直角坐标方程;

2)当时,若直线l与曲线C相交于AB两点,设,且,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案