精英家教网 > 高中数学 > 题目详情

【题目】某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;

(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

【答案】

【解析】1)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为

由题设有

其中均为1200之间的正整数.3分)

2)完成订单任务的时间为

其定义域为

易知,为减函数,为增函数.

注意到于是

时, 此时

由函数的单调性知,当取得最小值,解得.

由于.

故当时完成订单任务的时间最短,且最短时间为.6分)

时, 由于为正整数,故

此时.

,易知为增函数,则

.

由函数的单调性知,当取得最小值,解得.由于

此时完成订单任务的最短时间大于.9分)

时, 由于为正整数,故

此时

由函数的单调性知,当取得最小值,解得.

类似的讨论,此时完成订单任务的最短时间为,大于.

综上所述,当时,完成订单任务的时间最短,此时,生产ABC三种部件的人数分别为44,88,68.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面几种推理是合情推理的是

①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,侧棱底面 的中点.

(1)求二面角的平面角的余弦值;

(2)在被上是否存在点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东亚运动会将于2013106日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.

(1)根据以上数据完成以下2×2列联表:

喜爱运动

不喜爱运动

总计

10

16

6

14

总计

30

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?

(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?

参考公式:K2,其中

nabcd.

参考数据:

P(K2k)

0.40

0.25

0.10

0.010

k

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药在试验药效时发现:如果成人按规定剂量服用那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.

(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);

(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.

(1)依据题中的数据完成下表:

(2)通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+12f(an-1)+1,且a1=3,an>1.

(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;

(2)设cn=nbn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如下表所示.

时间/天

1

3

6

10

36

……

日销售量

/件

94

90

84

76

24

……

未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式为 ,且为整数),后20天每天的价格(元/件)与时间(天)的函数关系式为,且为整数).

(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据(件)与 (天)的关系式;

(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?

(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠元利润给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.

查看答案和解析>>

同步练习册答案