精英家教网 > 高中数学 > 题目详情

在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是


  1. A.
    锐角三角形
  2. B.
    直角三角形
  3. C.
    钝角三角形
  4. D.
    非钝角三角形
C
分析:由三角形的三边判断出b为最大边,根据大边对大角可得B为最大角,利用余弦定理表示出cosB,将已知的三边长代入求出cosB的值,由cosB的值小于0及B为三角形的内角,可得B为钝角,即三角形为钝角三角形.
解答:∵AB=c=5,BC=a=6,AC=b=8,
∴B为最大角,
∴由余弦定理得:cosB===-<0,
又B为三角形的内角,
∴B为钝角,
则△ABC的形状是钝角三角形.
故选C
点评:此题考查了三角形形状的判断,涉及的知识有:余弦定理,三角形的边角关系,以及余弦函数的图象与性质,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案