分析 由条件利用同角三角函数的基本关系求得sinα和cosα的值,可得要求式子的值.
解答 解:∵已知$0<α<π,sinα•cosα=-\frac{1}{2}$,sin2α+cos2α=1,∴α为钝角,
∴sinα=$\frac{\sqrt{2}}{2}$,cosα=-$\frac{\sqrt{2}}{2}$,
则$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=$\frac{1}{\frac{2+\sqrt{2}}{2}}$+$\frac{1}{\frac{2-\sqrt{2}}{2}}$=4,
故答案为:4.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
停靠时间 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
轮船数量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | k≥4或k≤-4 | B. | $k≥\sqrt{2}$或$k≤-2\sqrt{2}$ | C. | $k=±2\sqrt{3}$ | D. | $k=±2\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com