A.有最小值 B.有最大值 C.是减函数 D.是增函数
解析:函数f(x)=x2-2ax+a的对称轴是直线x=a,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a位于区间(-∞,1)内,即a<1.g(x)==x+-2a,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x1<x2,则g(x1)-g(x2)=(x1+-2a)-(x2+-2a)=(x1-x2)+
()=(x1-x2)(1-)=(x1-x2).
∵1<x1<x2,
∴x1-x2<0,x1x2>1>0.
又∵a<1,∴x1x2>a.
∴x1x2-a>0.
∴g(x1)-g(x2)<0.∴g(x1)<g(x2).
∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值,故选D.
答案:D
科目:高中数学 来源: 题型:
|
A、(-∞,-1)∪(2,+∞) |
B、(-1,2) |
C、(-2,1) |
D、(-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
a | x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com