精英家教网 > 高中数学 > 题目详情
10.若F1,F2是椭圆C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,$\sqrt{5}$)的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

分析 (Ⅰ)求出a=3,b=$\sqrt{m}$,设椭圆的下焦点F1,设线段PF1的中点为:M;由题意,OM⊥PF1,又OM=b,OM是△PF1F2的中位线,由椭圆定义,在Rt△OMF1中的勾股定理,求出b=2,得到m.然后求解椭圆C的方程.
(Ⅱ)上焦点坐标(0,$\sqrt{5}$).直线l的斜率k必存在.设A(x1,y1)B(x2,y2),弦AB的中点Q(x0,y0),利用平方差法得到AB的斜率,通过(1)当x0≠0时,k=kAB=$\frac{{y}_{0}-\sqrt{5}}{{x}_{0}}$,推出9x02+4y02-4$\sqrt{5}$y0=0,连结BN,则E为△ABN的重心,设E(x,y),利用重心坐标公式,推出$\left\{\begin{array}{l}{{x}_{0}=4x}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$代入9x02+4y02-4$\sqrt{5}$y0=0轨迹方程,(2)当x0=0时,验证即可.

解答 解:(Ⅰ)∵0<m<9,∴a=3,b=$\sqrt{m}$,不妨设椭圆的下焦点F1,设线段PF1的中点为:M;
由题意,OM⊥PF1,又OM=b,OM是△PF1F2的中位线,
∴|PF2|=2b,
由椭圆定义,|PF1|=2a-2b=6-2b.∴$|M{F}_{1}|=\frac{1}{2}|P{F}_{1}|$=3-b,
在Rt△OMF1中:$|O{F}_{1}{|}^{2}=|OM{|}^{2}+|M{F}_{1}{|}^{2}$,
∴c2=b2+(3-b)2,又c2=a2-b2=9-b2.,
∴b2+(3-b)2=9-b2交点b=0(舍去)或b=2,∴m=b2=4.
∴椭圆C的方程:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1.
(Ⅱ)由(Ⅰ)椭圆C的方程:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1.
上焦点坐标(0,$\sqrt{5}$).直线l的斜率k必存在.
设A(x1,y1)B(x2,y2),弦AB的中点Q(x0,y0),
由$\left\{\begin{array}{l}{{{4x}_{1}}^{2}+9{{y}_{1}}^{2}=36}\\{4{{x}_{2}}^{2}+9{{y}_{2}}^{2}=36}\end{array}\right.$,可得4(y1+y2)(y1-y2)=-9(x1+x2)(x1-x2),
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{9({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$=-$\frac{9{x}_{0}}{4{y}_{0}}$(y0≠0)
(1)当x0≠0时,k=kAB=$\frac{{y}_{0}-\sqrt{5}}{{x}_{0}}$∴k=$-\frac{9{x}_{0}}{4{y}_{0}}$=$\frac{{y}_{0}-\sqrt{5}}{{x}_{0}}$⇒9x02+4y02-4$\sqrt{5}$y0=0,•
又l1:y-y0=$\frac{4{y}_{0}}{9{x}_{0}}(x-{x}_{0})$,∴N($-\frac{5}{4}{x}_{0},0$),
连结BN,则E为△ABN的重心,设E(x,y),
则$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{x}_{2}+(-\frac{5}{4}{x}_{0})}{3}=\frac{{x}_{0}}{4}}\\{9=\frac{{y}_{1}+{y}_{2}+0}{3}=\frac{2{y}_{0}}{3}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{0}=4x}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$代入9x02+4y02-4$\sqrt{5}$y0=0可得:48x2+3y2-2$\sqrt{5}y=0$,(y≠0).
(2)当x0=0时,l:y=$\sqrt{5}$,N(0,0),E(0,$\frac{2\sqrt{5}}{3}$)也适合上式,
综上所述,点E的轨迹方程为:48x2+3y2-2$\sqrt{5}y=0$,(y≠0).

点评 本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在六面体ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1
(1)证明:DD1∥BB1
(2)已知六面体ABCD-A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D-MNB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的程序框图,运行程序后,输出的结果等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,边a,b,c分别是角A,B,C的对边,cosA=$\frac{4}{5}$,b=2,△ABC的面积S=3,则边a的值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(-x)=f(2+x),f(2)=1,则不等式f(x)<ex的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,若x+2y≥a恒成立,则实数a的取值范围为(  )
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于(  )
A.0.10B.0.11C.0.12D.0.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为BC的中点,且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,则λ+μ=(  )
A.3B.2C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线mx-y-2=0与3x-(2+m)y-1=0平行,则实数m为(  )
A.1或-3B.-1或3C.-$\frac{1}{2}$D.-1

查看答案和解析>>

同步练习册答案