【题目】如图,在三棱锥S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分别是AC、BC的中点,F在SE上,且SF=2FE.
(1)求证:平面SBC⊥平面SAE
(2)若G为DE中点,求二面角G﹣AF﹣E的大小.
【答案】(1)证明见解析;(2).
【解析】
(1)利用底面证得,由等腰三角形的性质证得,由此证得平面,进而证得平面平面.
(2)以为坐标原点建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值,进而求得二面角的大小.
(1)∵SA⊥底面ABC,∴SA⊥BC,
又∵AC=AB,且点E是BC的中点,
∴BC⊥AE,
∵SA∩AE=A,∴BC⊥底面SAE,
∵BC平面SBC,
∴平面SBC⊥平面SAE.
(2)以A点为坐标原点,分别以AC,AB,AS为x,y,z轴建立空间坐标系O﹣xyz,
则A(0,0,0),S(0,0,2),E(1,1,0),G(1,,0),C(2,0,0),B(0,2,0),
由SF=2FE得F(,,),
∴=(1,1,0),=(,),=(1,,0),=(2,﹣2,0).
设平面AFG的法向量为=(x,y,z),则,
令y=2,得到x=﹣1,z=﹣1,
即=(﹣1,2,﹣1),
设平面AFE的法向量为,
由(1)知为平面AES的一个法向量,==(2,﹣2,0),
∴cosα===,
∵二面角G﹣AF﹣E的平面角为锐角,
∴二面角G﹣AF﹣E的大小为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点的直线l与抛物线交于A,B两点,以AB为直径作圆,记为,与抛物线C的准线始终相切.
(1)求抛物线C的方程;
(2)过圆心M作x轴垂线与抛物线相交于点N,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上单调增,求的取值范围;
(3)若函数在定义域上不单调,试判定的零点个数,并给出证明过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为2,点,满足,求直线被圆截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱中,是边长为2的正三角形,为的中点,平面,点在上,,为与的交点,且与平面所成的角为.
(1)求证:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
(1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设,分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:;;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体中,是的中点,点是上一点,,,.动点在上底面上,且满足三棱锥的体积等于1,则直线与所成角的正切值的最大值为( )
A.B.C.D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分,每项评分最低分0分,最高分100分,每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:
请根据图中所提供的信息,完成下列问题:
(I)若从交通得分前6名的景点中任取2个,求其安全得分都大于90分的概率;
(II)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为,求随机变量的分布列和数学期望;
(III)记该市26个景点的交通平均得分为安全平均得分为,写出和的大小关系?(只写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com