精英家教网 > 高中数学 > 题目详情

如图几何体中,四边形为矩形,的中点,为线段上的一点,且.

(1)证明:
(2)证明:面
(3)求三棱锥的体积.

(1)见解析;(2).

解析试题分析:(1)连接点,得知的中点,连接
根据点中点,利用三角形中位线定理,得出,进一步得到
.
(2)首先探究几何体中的线面、线线垂直关系,创造建立空间直角坐标系的条件,应用“向量法”,确定二面角的余弦值.
解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,能从“非规范几何体”,探索得到建立空间直角坐标系的条件.
试题解析:(1)连接点,则的中点,连接
因为点中点,所以的中位线,
所以                                2分

所以       4分
(2)取中点的中点,连接,则
所以共面
,则

全等,
全等,
中点,

                      6分

为原点,轴建立空间直角坐标系如图所示,则,设,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知长方形中,,的中点.将沿折起,使得平面平面.


(1)求证:
(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在圆锥PO中,已知PO=,☉O的直径AB=2,C是的中点,D为AC的中点.

求证:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:

(1)·.
(2)EG的长.
(3)异面直线EG与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.

(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足=== (如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).

(1)求证: E⊥平面BEP;
(2)求直线E与平面BP所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,,底面, ,的中点,的中点.

(Ⅰ)证明:直线平面
(Ⅱ)求异面直线所成角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.

(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

同步练习册答案