精英家教网 > 高中数学 > 题目详情
11.已知f(cosx)=cosnx,对任意x∈R.若f(sinx)=cosnx,求正整数n满足的条件.

分析 由诱导公式化简可得$\frac{π}{2}$n=2kπ(k为整数),即可解得n的值.

解答 解:由f(sinx)=f(cos($\frac{π}{2}$-x))=cos($\frac{π}{2}$n-nx)=cosnx=cos(-nx),
可得:$\frac{π}{2}$n=2kπ,(k为整数)
解得:n=4k,(k为整数),
故当n=4k,(k为整数)时,f(sinx)=cosnx.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在侧面ABB1A1为长方形的三棱柱ABC-A1B1C1中,AB=a,AA1=$\sqrt{2}$a,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1,且OC=OA.
(1)求点C1到侧面ABB1A1的距离;
(2)求直线C1D与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)=(1+\frac{1}{tanx}){sin^2}x-2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$
(1)若tanα=2,求f(α)的值;
(2)已知sinθ,cosθ是方程x2-ax+a=0的两根,求f(θ)-$\frac{1}{2}cos2θ-\frac{1}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线l与曲线C:y=x2+3相交于A,B,且线段AB的中点为P(-1,5),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=4,则A1B与平面A1DCB1所成角的正弦值是$\frac{4\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知tanA+tanC=$\frac{5}{4}$tanAtanC,且a、b、c成等比数列.
(1)求sinB的值;
(2)若△ABC的面积为4,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线y=1-x交椭圆mx2+ny2=1于M、N两点,弦MN的中点为P,O为坐标原点,若直线OP的斜率为$\frac{\sqrt{2}}{2}$,则$\frac{m}{n}$的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.方程x2+y2-4x+2my+2m2-2m+1=0表示一个圆.
(1)求m的取值范围;
(2)求这个圆的面积最大时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$=(1,sinα),$\overrightarrow{b}$=(cos2α,2sinα-1),α∈($\frac{π}{2}$,π).若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{5}$,则tan(α+$\frac{π}{4}$)的值为(  )
A.$\frac{2}{3}$B.-$\frac{1}{3}$C.$\frac{2}{7}$D.-$\frac{1}{7}$

查看答案和解析>>

同步练习册答案