精英家教网 > 高中数学 > 题目详情
函数y=sinx•cosx的图象的值域是
 
,周期是
 
,此函数为
 
函数(填奇偶性)
考点:二倍角的正弦
专题:计算题,三角函数的图像与性质
分析:y=sinx•cosx=
1
2
sin2x,即可得出函数的性质.
解答: 解:y=sinx•cosx=
1
2
sin2x,
∴值域是[-
1
2
1
2
];周期是π,此函数为奇函数.
故答案为:[-
1
2
1
2
];π;奇
点评:本题考查二倍角的正弦,考查三角函数的性质,正确化简函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2,当x∈(-2.5,3]时.
①写出函数f(x)的解析式;②作出函数f(x)的图象;
③若直线y=mx与函数f(x)=[x],x∈(-2.5,3]的图象有且仅有2个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax(x-1)(a≠0)且其图象的顶点恰好在函数y=log2x的图象上.
(1)求函数f(x)的解析式;
(2)若函数h(x)=|f(x)|+m恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=AC=BC=6,平面内一点M满足
BM
=
2
3
BC
-
1
3
BA
,则
AC
MB
等于(  )
A、-9B、-18C、12D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对边分别是a、b、c,(a+b)(sinA-sinB)=c(sinC-sinB)且a=2,△ABC的外接圆为⊙O,现在在⊙O内(包括圆周)随机取点,若记所取的点在△ABC内(包括三角形的边)的概率为p,则p的取值范围是(  )
A、0<p≤
3
B、
3
≤p≤
3
3
C、
3
<p≤
3
D、0<p≤
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD,∠BAD=90°,且PA=AB=BC=1,AD=2,PA⊥平面ABCD,E为AB的中点.
(I)证明:PC⊥CD;
(II)在线段PA上是否存在一点F,使EF∥平面PCD,若存在,求
AF
FP
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,面积为S,且满足S=
1
2
c2tanC.
(1)求
a2+b2
c2
的值;
(2)若bc=
2
,A=45°,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:

当0<a<1时满足|loga(x+1)>|loga(x-1)|的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△P1OP2的面积为
27
4
,P为线段P1P2的一个三等分点,求以直线OP1,OP2为渐近线且过点P而离心率为
13
2
的双曲线方程.

查看答案和解析>>

同步练习册答案