精英家教网 > 高中数学 > 题目详情
方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a,b,c的值依次为(  )
A、2,4,4B、-2,4,4C、2,-4,4D、2,-4,-4
分析:先根据方程求出用a、b和c表示的圆心坐标和圆的半径,再由题意代入对应的式子求出a、b和c的值.
解答:解:由x2+y2+2ax-by+c=0得,圆心坐标是(-a,
b
2
),半径为r2=
b2
4
+a2-c

因圆心为C(2,2),半径为2,解得a=-2,b=4,c=4,
故选B.
点评:本题考查了二元二次方程表示圆的问题,即根据方程表示出圆心坐标以及半径,再把条件代入进行求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:方程x2+y2-4x+2ay+2a2-2a+1=0表示圆,
命题q:?m∈[0,3],?x∈R使不等式x2-2ax+7≥
2m+8
成立,
如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程x2+y2-2ax+a2+2a-3=0表示圆,且过点A(a,a)可作该圆的两条切线,则实数a的取值范围为
a<-3或1<a<
3
2
a<-3或1<a<
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a,点P是线段F1Q与该椭圆的交点,曲线C的方程是x2+y2=a2
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)试问:曲线C上是否存在点M,使得△F1MF2的面积等于S=b2?若存在,求出椭圆离心率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+y2-2ax-2(a-1)y-1+2a=0.
(1)证明:不论a取何实数,曲线C必过定点;
(2)当a≠1时,若曲线C与直线y=2x-1相切,求a的值;
(3)对所有的a∈R且a≠1,是否存在直线l与曲线C总相切?如果存在,求出l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若方程x2+y2-2ax+a2+2a-3=0表示圆,且过点A(a,a)可作该圆的两条切线,则实数a的取值范围为________.

查看答案和解析>>

同步练习册答案