精英家教网 > 高中数学 > 题目详情

【题目】在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值 ,则t的取值范围是

【答案】[ ,2R)
【解析】解:设圆内接等腰三角形的底边长为2x,高为h,则x2=h(2R﹣h), ∵SABC=xh,
∴S2=x2h2=h3(2R﹣h)=﹣h4+2Rh3 , (0<h<2R),
令f(h)=﹣h4+2Rh3 , (0<h<2R),
∴f′(h)=﹣4h3+6Rh2=2h2(3R﹣2h),
令f′(h)=0,解得h=
当0<h< 时,f′(h)>0,函数f(h)单调递增,
<h<2R时,f′(h)<0,函数f(h)单调递减,
∴f(h)max=f( )=
∴Smax=
∴h= ∈(0,t),
∴t的范围为[ ,2R),
所以答案是:[ ,2R).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.

(1)AD边所在直线的方程;
(2)矩形ABCD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.

1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;

2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本(元)与月处理量(吨)之间的函数关系可以近似的表示为:,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.

(I)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;

(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共 个,生产一个卫兵需 分钟,生产一个骑兵需 分钟,生产一个伞兵需 分钟,已知总生产时间不超过 小时,若生产一个卫兵可获利润 元,生产一个骑兵可获利润 元,生产一个伞兵可获利润 元.

(1)用每天生产的卫兵个数 与骑兵个数 表示每天的利润 (元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾AOB,AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:

方案一 如图1,围成扇形养殖区OPQ,其中=l;

方案二 如图2,围成三角形养殖区OCD,其中CD=l;

(1)求方案一中养殖区的面积S1

(2)求证:方案二中养殖区的最大面积S2

(3)为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD.

(1)求证:EF∥平面PAD;

(2)若EF⊥PC,求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次方程

(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;

(2)若a[2,4],b[0,6],求方程没有实根的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣x2﹣lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

查看答案和解析>>

同步练习册答案