精英家教网 > 高中数学 > 题目详情
10.燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2$\frac{x}{10}$.若两岁燕子耗氧量达到40个单位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到320单位.

分析 由题意,令x=4,y=10代入解析式得到a;求得解析式,然后将v=25代入解析式求x

解答 解:由题意,令x=40,v=10    
 10=alog24;所以a=5;
v=25 m/s,25=5 log${\;}_{2}\frac{x}{10}$,得到x=320单位.
故答案为:320.

点评 本题主要考查对数函数的图象和性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知ab>0,且a+4b=1,则$\frac{1}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,在(0,+∞)上单调递减的是(  )
A.y=|x-1|B.y=log2xC.y=(x+1)2D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平面直角坐标系xOy中,以O为角的顶点,x轴正半轴为始边的角α、β的终边分别与单位圆交于点A,B,若点A的横坐标是$\frac{4}{5}$,点B的纵坐标是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果函数f(x)=3sin(2x+φ)的图象关于点($\frac{π}{3}$,0)成中心对称(|φ|<$\frac{π}{2}$),那么函数f(x)图象的一条对称轴是(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,Q分别为双曲线和椭圆上不同于A,B的动点,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),设AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求证:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)设F2′,F2分别为双曲线和椭圆的右焦点,且PF2′∥QF2,试判断k12+k22+k32+k42是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示的多面体中,已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,CD=8.
(1)证明:BD⊥平面BCF;
(2)设二面角E-BC-F的平面角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(3,x),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记Sn为数列{an}的前项n和,已知an>0,${a_n}^2-2{S_n}=2-{a_n}$(n∈N*
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设${b_n}=\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求数列{bn}的前项n和Tn

查看答案和解析>>

同步练习册答案