精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t为正常数,n=2,3,4…).
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
1bn-1
)(n≥2)
,试求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
分析:(1)因为an=Sn-Sn-1(n≥2,n∈N*),所以在3tSn-(2t+3)Sn-1=3t的基础上,用n-1替换n构造与它类似的关系式;然后利用作差法求出an与an-1的关系式,进而可整理为等比数列形式;但不要忘掉未含项的检验.
(2)由(1)知{an}的公比f(t),又bn=f(
1
bn-1
),则可找到bn与bn-1的关系,进而可整理为等差数列形式;则由等差数列通项公式可求bn;代数式b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1的求值,可利用分组的方法,把它转化到等差数列的性质与前n项和公式上去,则问题解决.
解答:(1)证明:∵a1=1,3tSn-(2t+3)Sn-1=3t(n≥2,n∈N*)①
∴3tSn-1-(2t+3)Sn-2=3t(n≥3,n∈N*)②
①②两式相减得
3tan-(2t+3)an-1=0
an
an-1
=
2t+3
3t
(n≥3,t为正常数)

又n=2时,
3t(1+a2)-(2t+3)•1=3t
a2=
2t+3
3t
a2
a1
=
2t+3
3t

∴an是以1为首项,
2t+3
3t
为公比的等比数列.
(2)解:∵f(t)=
2t+3
3t
=
2+
3
t
3
,∴bn=
2+3bn-1
3
,∴bn-bn-1=
2
3
(n≥2)

∴bn是以1为首项,
2
3
为公差的等差数列,∴bn=
2n+1
3

∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
=b2(b1-b3)+b4(b3-b4)+…+b2n(b2n-1-b2n+1
=-
4
3
(b2+b4+b2n)=-
4
3
n(
5
3
+
4n+1
3
)
2
=
-8n2-12n
9
点评:若数列{an}的前n项和为Sn,则an=Sn-Sn-1(n≥2,n∈N*)是实现前n项和Sn向通项an转化的桥梁与纽带,进而可结合等差数列、等比数列的定义与性质解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案