精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求证:AC⊥BC1
(3)求直线AB1与平面BB1C1C所成的角的正切值.

【答案】
(1)证明:如图:

设BC1∩B1C=O,则O为BC1的中点,连接OD,

∵D为AB的中点,∴OD∥AC1

又∵OD平面CDB1,AC1平面CDB1

∴AC1∥平面CDB1


(2)证明:∵AC2+BC2=AB2,∴AC⊥BC.

又∵C1C∥AA1,AA1⊥底面ABC,∴C1C⊥底面ABC,∴AC⊥CC1

又BC∩CC1=C,∴AC⊥平面BCC1B1

而BC1平面BCC1B1,∴AC⊥BC1


(3)证明:由(2)得AC⊥平面B1BCC1

∴直线B1C是斜线AB1在平面B1BCC1上的射影,

∴∠AB1C是直线AB1与平面B1BCC1所成的角,

在RT△AB1C中,B1C=4 ,AC=3,

∴tan∠AB1C= =

直线AB1与平面BB1C1C所成的角的正切值为


【解析】(1)设BC1∩B1C=O,由三角形的中位线性质可得OD∥AC1 , 从而利用线面平行的判定定理证明AC1∥平面CDB1 , (2)利用勾股定理证明AC⊥BC,证明C1C⊥底面ABC,可得AC⊥CC1 , 由线面垂直的判定定理证得AC⊥平面BCC1B1 , 从而证得AC⊥BC1 . (3)得到∠AB1C是直线AB1与平面B1BCC1所成的角,解三角形即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.

(1)若PB中点为E.求证:AE∥平面PCD;
(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sin(π﹣α)﹣cos(π+α)= <α<π).求:
(1)sinα﹣cosα;
(2)tanα+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为A.
(1)求A;
(2)已知k>0,集合B={x| },且A∩B≠,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,

(1)求证:AD1⊥平面CDA1B1
(2)求直线AD1与直线BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求不等式的解集;

若函数的最小值为,整数满足,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA、PB,切点为A、B.
(1)当切线PA的长度为2 时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(3)求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面 .

(1)求证: 平面

(2)是棱上的一点,若二面角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:
①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系是不共线;
②O,A,B,C为空间四点,且向量 不构成空间的一个基底,则点O,A,B,C一定共面;
③已知向量 是空间的一个基底,则向量 + 也是空间的一个基底;
④△ABC中,A>B的充要条件是sinA>sinB.
其中正确的命题个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案