(本小题满分13分)已知直四棱柱ABCD—A1B1C1D1的
底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,
M为线段AC1的中点. (1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1;
(3)求平面AFC1与与平面ABCD所成二面角的大小.
(Ⅰ) 见解析 (Ⅱ) 见解析 (Ⅲ)30°或150°
法一:
(1)延长C1F交CB的延长线于点N,连接AN。因为F是BB1的中点,
所以F为C1N的中点,B为CN的中点。····2分
又M是线段AC1的中点,故MF∥AN。·····3分
又MF平面ABCD,AN平面ABCD。
∴MF∥平面ABCD。 ···5分
(2)证明:连BD,由直四棱柱ABCD—A1B1C1D1
可知A1A⊥平面ABCD,又∵BD平面ABCD,
∴A1A⊥BD。∵四边形ABCD为菱形,∴AC⊥BD。
又∵AC∩A1A=A,AC,AA平面ACC1A1。
∴BD⊥平面ACC1A1。 ·················7分
在四边形DANB中,DA∥BN且DA=BN,所以四边形DANB为平行四边形
故NA∥BD,∴NA⊥平面ACC1A1,又因为NA平面AFC1
∴平面AFC1⊥ACC1A1
(3)由(2)知BD⊥ACC1A1,又AC1ACC1A1,∴BD⊥AC1,∴BD∥NA,∴AC1⊥NA。
又由BD⊥AC可知NA⊥AC,
∴∠C1AC就是平面AFC1与平面ABCD所成二面角的平面角或补角。···10分
在Rt△C1AC中,tan,故∠C1AC=30°···12分
∴平面AFC1与平面ABCD所成二面角的大小为30°或150°。···13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com