精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的偶函数,满足,且在区间上是增函数,

①函数的一个周期为4;

②直线是函数图象的一条对称轴;

③函数上单调递增,在上单调递减;

④函数内有25个零点;

其中正确的命题序号是_____(注:把你认为正确的命题序号都填上)

【答案】①②④

【解析】

先求得,由此函数的周期性.通过证明求得函数的对称轴,根据奇偶性、周期性和单调性画出函数的图像,由此判断③④的真假.

,即,由于函数为偶函数,故.所以,所以函数是周期为的周期函数,故①正确.由于函数为偶函数,故,所以是函数图像的一条对称轴,故②正确.根据前面的分析,结合函数在区间上是增函数,画出函数图像如下图所示.由图可知,函数在上单调递减,故③错误.根据图像可知,,零点的周期为,共有个零点,故④正确.综上所述正确的命题有①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别是的中点,上且.

(I)求证:

(II)求直线与平面所成角的正弦值;

(III)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知动点P与两定点F1(﹣10)、F210)的连线的斜率之积为,求动点P的轨迹方程.

2)已知双曲线的渐近线方程为y±x,且与椭圆1有公共焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. 288 B. 144 C. 720 D. 360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,是两个边长为2的正三角形,的中点,的中点.

(1)证明:平面.

(2)在线段上是否存在一点,使直线与平面所成角的正弦值为?若存在,求出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+=3

1)求曲线C1C2的直角坐标方程.

2)若M是曲线C1上的一点,N是曲线C2上的一点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的方程为,离心率,顶点到渐近线的距离为

(1)求双曲线的方程;

(2)是双曲线点,,两点在双曲线的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围.

查看答案和解析>>

同步练习册答案