7£®ÒÑÖªn¡ÊN*£¬ÊýÁÐ{an}µÄ¸÷ÏîΪÕýÊý£¬Ç°nÏîµÄºÍΪSn£¬ÇÒa1=1£¬a2=2£¬Éèbn=a2n-1+a2n£®
£¨1£©Èç¹ûÊýÁÐ{bn}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ÇóS2n£»
£¨2£©Èç¹û¶ÔÈÎÒân¡ÊN*£¬Sn=$\frac{{a}_{n}^{2}+n}{2}$ºã³ÉÁ¢£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Èç¹ûS2n=3£¨2n-1£©£¬ÊýÁÐ{anan+1}ҲΪµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

·ÖÎö £¨1£©b1=a1+a2=3£¬¿ÉµÃbn=3n=a2n-1+a2n£®ÀûÓ÷Ö×éÇóºÍÓëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ³öS2n£®
£¨2£©¶ÔÈÎÒân¡ÊN*£¬Sn=$\frac{{a}_{n}^{2}+n}{2}$ºã³ÉÁ¢£¬¿ÉµÃn¡Ý2ʱ£¬an=Sn-Sn-1£¬»¯Îª£º$£¨{a}_{n}-1£©^{2}$=${a}_{n-1}^{2}$£¬an£¾0£®¿ÉµÃan-an-1=1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨3£©ÓÉS2n=3£¨2n-1£©£¬ÇÒa1=1£¬a2=2£¬¿ÉµÃa1+a2+a3+a4=9£¬¿ÉµÃa3+a4=6£®ÓÉÊýÁÐ{anan+1}ҲΪµÈ±ÈÊýÁУ¬É蹫±ÈΪq=$\frac{{a}_{n+2}}{{a}_{n}}$£¬¿ÉµÃÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ð³ÉµÈ±ÈÊýÁУ¬¹«±ÈΪq£®¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©b1=a1+a2=3£¬¡àbn=3n=a2n-1+a2n£®
¡àS2n=3+32+¡­+3n=$\frac{3£¨{3}^{n}-1£©}{3-1}$=$\frac{{3}^{n+1}-3}{2}$£®
£¨2£©¶ÔÈÎÒân¡ÊN*£¬Sn=$\frac{{a}_{n}^{2}+n}{2}$ºã³ÉÁ¢£¬
¡àn¡Ý2ʱ£¬an=Sn-Sn-1=$\frac{{a}_{n}^{2}+n}{2}$-$\frac{{a}_{n-1}^{2}+n-1}{2}$£¬»¯Îª£º$£¨{a}_{n}-1£©^{2}$=${a}_{n-1}^{2}$£¬an£¾0£®
¡àan-1=an-1£¬¼´an-an-1=1£¬
¡àan=1+£¨n-1£©=n£®
£¨3£©¡ßS2n=3£¨2n-1£©£¬ÇÒa1=1£¬a2=2£¬
¡àa1+a2+a3+a4=3¡Á£¨22-1£©=9=1+2+a3+a4£¬
¡àa3+a4=6£®
¡ßÊýÁÐ{anan+1}ҲΪµÈ±ÈÊýÁУ¬É蹫±ÈΪq=$\frac{{a}_{n+2}}{{a}_{n}}$£¬
¡àÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ð³ÉµÈ±ÈÊýÁУ¬¹«±ÈΪq£®
¡àa3=q£¬a4=a2q=2q£¬
¡àq+2q=3¡Á2£¬½âµÃq=2£®
¡à${a}_{2n-1}={a}_{1}{q}^{n-1}$=2n-1£¬
a2n=${a}_{2}{q}^{n-1}$=2n£®
¿ÉµÃan=$\left\{\begin{array}{l}{{2}^{\frac{n-1}{2}}£¬n=2k-1}\\{{2}^{\frac{n}{2}}£¬n=2k}\end{array}\right.$£¨k¡ÊN*£©£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍƹØϵ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеĶ¨ÒåͨÏʽÓëÇóºÍ¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶Ô±ßµÄ³¤·Ö±ðΪa£¬b£¬c£¬$\overrightarrow{AB}•\overrightarrow{AC}=8$£¬¡ÏBAC=¦È£®
£¨I£©Èô${sin^2}£¨{¦È+\frac{¦Ð}{4}}£©+\frac{{\sqrt{3}}}{2}cos2¦È=\frac{{1+\sqrt{3}}}{2}$£¬ÇóÈý½ÇÐεÄÃæ»ý£»
£¨II£©Èôa=4£¬ÇóbcµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+x£¬x¡Ü1}\\{lo{g}_{0.5}x£¬x£¾1}\end{array}\right.$Èô¶ÔÓÚÈÎÒâx¡ÊR£¬²»µÈʽf£¨x£©¡Ü$\frac{{t}^{2}}{4}$-t+1ºã³ÉÁ¢£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬1]¡È[3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ô²C£ºx2+y2=1¹ØÓÚÖ±Ïßl£ºx+y=1¶Ô³ÆµÄÔ²µÄ±ê×¼·½³ÌΪ£¨x-1£©2+£¨y+1£©2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ò»Ö±Ïßl¹ýÖ±Ïßl1£º3x-y=3ºÍÖ±Ïßl2£ºx-2y=2µÄ½»µãP£¬ÇÒÓëÖ±Ïßl3£ºx-y+1=0´¹Ö±£®
£¨1£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÔ²ÐÄÔÚxÕý°ëÖáÉϵİ뾶Ϊ$\sqrt{2}$µÄÔ²CÏàÇУ¬ÇóÔ²CµÄ±ê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈôÃüÌ⣺¡°?x¡ÊR£¬ax2-ax-1¡Ü0¡±ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[-4£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¹ýµãC£¨0£¬$\sqrt{2}$£©µÄÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÍÖÔ²ÓëxÖá½»ÓÚÁ½µãA£¨a£¬0£©£¬B£¨-a£¬0£©£¬¹ýµãCµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚÁíÒ»µãD£¬²¢ÓëxÖá½»ÓÚµãP£¬Ö±ÏßACÓëBD½»ÓÚµãQ£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±Ö±Ïßl¹ýÍÖÔ²ÓÒ½¹µãʱ£¬ÇóÏ߶ÎCDµÄ³¤£»
£¨3£©µ±µãPÒìÓÚµãBʱ£¬ÇóÖ¤£º$\overrightarrow{OP}$•$\overrightarrow{OQ}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Éè¹ýÇúÏßf£¨x£©=-ex-x£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÉϵÄÈÎÒâÒ»µãµÄÇÐÏßl1£¬×Ü´æÔÚ¹ýÇúÏßg£¨x£©=mx-3sinxÉϵÄÒ»µã´¦µÄÇÐÏßl2£¬Ê¹l1¡Íl2£¬ÔòmµÄÈ¡Öµ·¶Î§Îª[-2£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF£¬¹ýµãFÇÒÇãб½ÇΪ45¡ãµÄÖ±ÏßlÓëÅ×ÎïÏß·Ö±ð½»ÓÚA¡¢BÁ½µã£¬Ôò|AB|=£¨¡¡¡¡£©
A£®3B£®6C£®8D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸