精英家教网 > 高中数学 > 题目详情

【题目】已知数列{bn}满足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表达式(不必写出证明过程);
(2)设cn= ,数列|cn|的前项和为Sn , 求证Sn

【答案】
(1)解:由a1=2,an+1= 可得:a2= ,a3= .又bn=| |,

则b1=4,b2=8,b3=16.

猜想bn=4×2n1=2n+1


(2)解:证明:cn= = =

∴数列|cn|的前项和为Sn= + +…+ =

∴Sn


【解析】(1)由a1=2,an+1= 可得:a2= ,a3= .又bn=| |,可得b1 , b2 , b3 . 猜想bn=2n+1 . (2)cn= = = ,即可得出数列|cn|的前项和为Sn
【考点精析】掌握数列的定义和表示和数列的前n项和是解答本题的根本,需要知道数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.

区间

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人数

25

a

b


(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果 是平面 内所有向量的一组基底,那么( )
A.若实数 ,使 ,则
B.空间任一向量 可以表示为 ,这里 是实数
C. 不一定在平面
D.对平面 内任一向量 ,使 的实数 有无数对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列 中,若 为常数)则称 为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若 是“等方差数列”,在数列 是等差数列;
是“等方差数列”;
③若 是“等方差数列”,则数列 为常)也是“等方差数列”;
④若 既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的焦距为2 ,椭圆C上任意一点到椭圆两个焦点的距离之和为6. (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx﹣2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ ,x∈[0,1].
(1)用分析法证明:f(x)≥1﹣x+x2
(2)证明:f(x)≤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=xlnx有如下结论: ①该函数为偶函数;
②若f′(x0)=2,则x0=e;
③其单调递增区间是[ ,+∞);
④值域是[ ,+∞);
⑤该函数的图象与直线y=﹣ 有且只有一个公共点.(本题中e是自然对数的底数)
其中正确的是(请把正确结论的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a1a2 , …,an是1,2,…,n的一个排列,求证: ·

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>2,求证:loga(a-1)<log(a1)a.

查看答案和解析>>

同步练习册答案