精英家教网 > 高中数学 > 题目详情
3.集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁NB)={1,5,7};A∪B的真子集有255个.

分析 利用集合的交集的定义求出A∩CNB,求出A∪B,由此能求出集合A∪B的真子集个数.

解答 解:∵合A={1,3,5,7,9},B={0,3,6,9,12},
∴A∩∁NB={1,5,7},
∴A∪B={0,1,3,5,6,7,9,12},
∴A∪B的真子集有28-1=255,
故答案为:{1,5,7},255

点评 本题考查并集的运算和求集合的真子集的个数.若集合A中有n个元素,则集合A有2n-1个真子集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义一种新运算“*”,对自然数n满足以下等式:(1)1*1=1;(2)(n+1)*1=3(n*1),则2*1=3;n*1=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈N|-2<x<3},则集合A中的元素是(  )
A.-2,-1,0,1,2,3B.0,1,2,3C.0,1,2D.1,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)={log_5}({6^x}+1)$的值域为(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\sqrt{x-1}$
(1)求函数f(x)的定义域;
(2)判断函数f(x)在定义域上的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)同时满足;①f(x+1)-f(x)=2x;②x∈R,恒有f(x)≥x2-x+1成立;③当x≥0时,f(x)≤2x
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是一个缆车示意图,该缆车的半径为4.8m,圆上最低点与地面的距离为0.8m,缆车每60s转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面的距离为hm.
(1)求h与θ之间的函数解析式;
(2)设从OA开始转动,经过ts达到OB,求h与之间的函数解析式,并计算经过45s后缆车距离地面的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函效f(x)=$\left\{\begin{array}{l}{x-sinx,x<0}\\{{x}^{3}+1,x≥0}\end{array}\right.$,则下列结论正确的是(  )
A.f(x)有极值B.f(x)有零点C.f(x)是奇函数D.f(x)是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知x>2,求x+$\frac{9}{x-2}$的最小值;
(2)计算:$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+$(\frac{\sqrt{2}}{1-i})$2016

查看答案和解析>>

同步练习册答案