精英家教网 > 高中数学 > 题目详情
1.已知z=x2+$\frac{1}{2}$y2+3,其中x,y满足关系式y2=4x,则z的最小值是3.

分析 根据y2=4x便可得到x≥0,带入z便可得到z=x2+2x+3,然后根据x的范围,配方即可求出z的最小值.

解答 解:∵y2=4x;
∴x≥0;
∴z=x2+2x+3=(x+1)2+2;
∴x=0时,z取到最小值3.
故答案为:3.

点评 考查配方求二次函数在一区间上的最值的方法,并且不要忘了确定x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.三棱锥P-ABC,PA=PB=PC=2,∠APC=∠APB=∠BPC=$\frac{π}{6}$,一只蚂蚁从A处出发沿三棱锥的侧面爬一周,最短路线为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若数列{an}的首项a1=2,an+1=(2+$\frac{2}{n}$)an,则an=n•2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知△ABC中,a+b=10,c=6,∠C=60°,求三角形的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设A={x|1≤x≤10,x∈N},B={x|(x-1)2≤1},则A∩B={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点R(-1,0)的直线l与椭圆C交于P,Q两点,且$\overrightarrow{PR}$=2$\overrightarrow{RQ}$.(1)当直线l的倾斜角为60°时,求三角形OPQ的面积;
(2)当三角形OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线S与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{34}$=1的焦点相同,如果y=$\frac{3}{4}$x是双曲线S的一条渐近线,那么双曲线S的方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{AB}$=(-2,3),C(-3,4),$\overrightarrow{CD}$=-3$\overrightarrow{AB}$,求点D的坐标为(4,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,平行四边形ABCD中,AB=2,BC=$\sqrt{2}$,∠BAD=45°,O为CD中点,将△BOC沿OB边翻折,折成直二面角A-BO-C,E为AC中点,
(Ⅰ)求证:DE∥平面BOC;
(Ⅱ)求直线AC与平面BCD所成夹角的正弦值.

查看答案和解析>>

同步练习册答案