精英家教网 > 高中数学 > 题目详情
19.已知首项大于0的数列{an}满足:an≠0,$\frac{1}{9}$,a1,1成等比数列,an-an+1=2an+1•an(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an2}的前n项和为Tn,证明:Tn<$\frac{1}{4}$.

分析 (1)由首项大于0的数列{an}满足:$\frac{1}{9}$,a1,1成等比数列,可得${a}_{1}^{2}$=$\frac{1}{9}$×1,解得a1.由an≠0,an-an+1=2an+1•an(n∈N*).变形为:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,利用等差数列的通项公式即可得出.
(2)由${a}_{n}^{2}$=$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}$$(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”与不等式的性质即可得出.

解答 (1)解:∵首项大于0的数列{an}满足:$\frac{1}{9}$,a1,1成等比数列,
∴${a}_{1}^{2}$=$\frac{1}{9}$×1,解得a1=$\frac{1}{3}$.
∵an≠0,an-an+1=2an+1•an(n∈N*).
∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为3,公差为2.
∴$\frac{1}{{a}_{n}}$=3+2(n-1)=2n+1,
∴an=$\frac{1}{2n+1}$.
(2)证明:∵${a}_{n}^{2}$=$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}$$(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{an2}的前n项和为Tn=$\frac{1}{4}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$<$\frac{1}{4}$.
∴Tn$<\frac{1}{4}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+(a-1)x,h(x)=f(x)-$\frac{1}{2}$ax2
(1)若函数f(x)有两个不同的零点x1,x2,求实数a的取值范围;
(2)讨论函数h(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列命题:
①若函数f(x)=3sin(ωx+φ)对于任意的x都有f($\frac{π}{6}$+x)=-f($\frac{π}{6}$-x),则f($\frac{π}{6}$)=0;
②正切函数在定义域上单调递增;
③曲线g(x)=x2与曲线f(x)=2x有三个公共点;
④若$\overrightarrow{a}$∥$\overrightarrow{b}$,则有且只有一个实数λ,使$\overrightarrow{b}$=λ$\overrightarrow{a}$;
⑤已知函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(0,$\frac{\sqrt{5}}{5}$).
其中正确命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.平行四边形ABCD内接于椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,直线AB的斜率k1=1,则直线AD的斜率k2=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个三角形在一个平面上的投影是(  )
A.一个三角形B.一条线段
C.一个点D.一个三角形或一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,求使向量(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)与(λ$\overrightarrow{a}$-3$\overrightarrow{b}$)的夹角是直角的λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点M(x,y)在运动过程中,总满足关系式$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=10.
(1)直接写出点M的轨迹是什么曲线,并求该曲线的标准方程;
(2)若直线y=$\frac{5}{4}$x+m与点M的轨迹相交于A、B两点,且△OAB的面积为8(O为坐标原点),求常数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.给出下列三个集合,指出它们之间的关系,并加以区别;A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为$\frac{2}{3}$,公比为-$\frac{1}{3}$的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案