精英家教网 > 高中数学 > 题目详情

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

【答案】(1)有90% 以上的把握(2)

【解析】试题分析:(1)本问考查独立性检验,根据列联表中的数据,计算,并将所得结果与所给表格中的临界值进行对照,从而判断有多大把握认为是否愿意被外派与年龄有关”;(2)本问考查古典概型概率公式问题,关键是确定基本事件空间总数及事件A所包含的基本事件个数,基本事件空间可以采用列表法、树状图法,列举法等表示,本问中愿意被外派人数不少于不愿意被外派人数愿意被外派人数为人或,确定其包含的基本事件个数,就可以求出从其概率.

试题解析:(Ⅰ)

所以有90% 以上的把握认为“是否愿意被外派与年龄有关”.

(Ⅱ)设后员工中报名参加活动有愿意被外派的人为,不愿意被外派的人为,现从中选人,如图表所示,用表示没有被选到,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(可以以不同形式列举出15种情况)

则“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为人或人”

种情况,则其概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD﹣A1B1C1D1是正方体,E,F,G,H,M,N分别是所在棱的中点,则下列结论错误的有
①GH和MN是平行直线;GH和EF是相交直线
②GH和MN是平行直线;MN和EF是相交直线
③GH和MN是相交直线;GH和EF是异面直线
④GH和EF是异面直线;MN和EF也是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

/p>

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设角A,B,C的对边分别为a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大小;
(2)若b=4 , 且c=a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不同直线m,n和不同平面α,β,给出下列命题:
, ② , ③m,n异面,④
其中假命题有:(  )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(﹣3,0),有|QF||QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)同时满足:(ⅰ)对于定义域内的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)对于定义域内的任意x1 , x2 , 当x1≠x2时,恒有 , 则称函数f(x)为“二维函数”.现给出下列四个函数:
①f(x)=
②f(x)=﹣x3+x


其中能被称为“二维函数”的有 (写出所有满足条件的函数的序号).

查看答案和解析>>

同步练习册答案