精英家教网 > 高中数学 > 题目详情

把极坐标方程ρcos=1化为直角坐标方程是________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)+
2
=0
,曲线C1的参数方程为 
x=2+4cosθ
y=
1
2
+sinθ
(θ是参数)

(1)若把曲线C1上的横坐标缩短为原来的
1
4
,纵坐标不变,得到曲线C2,求曲线C2在直角坐标系下的方程
(2)在第(1)问的条件下,判断曲线C2与直线l的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•晋中三模)选修4-4:坐标系与参数方程选讲
在直角坐标系xoy中,曲线c1的参数方程为:
x=2cosθ
y=2sinθ
(θ为参数),把曲线c1上所有点的纵坐标压缩为原来的一半得到曲线c2,以O为极点,x正半轴为极轴建立极坐标系,直线l的极坐标方程为
2
ρcos(θ-
π
4
)=4

(1)求曲线c2的普通方程,并指明曲线类型;
(2)过(1,0)点与l垂直的直线l1与曲线c2相交与A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:参考方程与极坐标
分别在下列两种情况下,把参数方程
x=
1
2
(et+e-t)cosθ
y=
1
2
(et-e-t)sinθ
化为普通方程:
(1)θ为参数,t为常数;
(2)t为参数,θ为常数.

查看答案和解析>>

同步练习册答案