精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)证明:

(2)根据(1)证明: .

(B)已知函数 .

(1)用分析法证明:

(2)证明: .

【答案】(A)(1)详见解析;(2)详见解析. (B)(1)详见解析;(2)详见解析.

【解析】试题分析:(A)(1)要证原不等式成立,先将函数的表达式代入原不等式,两边乘以,可以得到一个显然成立的结论,由此证得原不等式成立.(2)利用(1)的结论,将(1)右边的二次函数配方,求出其最小值,由此可证得,而,综上所述, .(B)(1)(1)要证原不等式成立,先将函数的表达式代入原不等式,两边乘以,可以得到一个显然成立的结论,由此证得原不等式成立.(2)由于时,有,所以,令,利用导数求得的最大值为,由此证得.

试题解析:

(A)解(1)由

要证

只需证

只需证

只需证,因为成立,所以成立.

(2)因为,当且仅当时取等号,

所以由(1)得.

(B)解(1)由

要证

只需证

只需证

只需证,因为成立,所以成立.

(2)证法1 由

上为增函数,

所以.

证法2 由

,则,设

,∴,则时为增函数,

∴存在,使得,即

时, 为减函数, 时, 为增函数,

时, 有最大值0,即成立.

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)求过点且在两个坐标轴上截距相等的直线方程。

(2)已知圆心为的圆经过点,且圆心在直线上,求圆心为的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

(1函数上的偶函数为事件,求事件的概率;

(2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司拟投资开发某项新产品,市场评估能获得10~1 000万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不低于1万元,同时不超过投资收益的20%.

(1) 设奖励方案的函数模型为f(x),试用数学语言表述公司对奖励方案的函数模型f(x)的基本要求;

(2) 公司能不能用函数f(x)=+2作为预设的奖励方案的模型函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴一个端点到右焦点的距离为.

1 求椭圆的方程;

2 设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如下图所示,其中主视图与左视图是腰长为6的等腰直角三角形,俯视图是正方形

请画出该几何体的直观图,并求出它的体积;

用多少个这样的几何体可以拼成一个棱长为6的正方体ABCDA1B1C1D1? 如何组拼?试证明你的结论;

的情形下,设正方体ABCDA1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

讨论的单调性;

存在两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径一种是从沿直线步行到另一种是先从沿索道乘缆车到然后从沿直线步行到.现有甲、乙两位游客从处下山甲沿匀速步行,速度为.在甲出发乙从乘缆车到处停留再从匀速步行到假设缆车匀速直线运动的速度为山路长为1260经测量

1求索道的长

2问:乙出发多少,乙在缆车上与甲的距离最短?

3为使两位游客在处互相等待的时间不超过乙步行的速度应控制在什么范围内

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数y(1a)x是R上的增函数,命题q不等式ax2+2x-1>0有解若命题p是真命题,命题q是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案