精英家教网 > 高中数学 > 题目详情

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

【答案】(1) (2)过定点,(3)4

【解析】试题分析:(Ⅰ)先借助抛物线定义确定曲线的形状是抛物线,再确定参数,进而求出;(Ⅱ)先依据(Ⅰ)的结论分别建立的方程,再分别与抛物线联立方程组,求出弦中点为的坐标,最后借助斜率的变化确定直线经过定点;(Ⅲ)在(Ⅱ)前提条件下,先求出,然后建立面积关于变量的函数,再运用基本不等式求其最小值:

解:(Ⅰ)由题意可知:动点到定点的距离等于到定直线的距离.根据抛物线的定义可知,点的轨迹是抛物线.

,∴抛物线方程为:

(Ⅱ)设两点坐标分别为,则点的坐标为.

由题意可设直线的方程为.

,得.

.

因为直线与曲线两点,所以.

所以点的坐标为.

由题知,直线的斜率为,同理可得点的坐标为.

时,有,此时直线的斜率.

所以,直线的方程为,整理得.

于是,直线恒过定点

时,直线的方程为,也过点.

综上所述,直线恒过定点.

(Ⅲ)可求得.所以面积.

当且仅当时,“ ”成立,所以面积的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的定义域为集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=[2,log2t],集合B={x|y= },
(1)对于区间[a,b],定义此区间的“长度”为b﹣a,若A的区间“长度”为3,试求实数t的值.
(2)若AB,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是(
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”
B.若p∧q为假命题,则p,q均为假命题
C.对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)如图13,四棱锥P ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;

(2)设AP=1,AD=,三棱锥P ABD的体积V=,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满12分) 已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中

1)求点M不在x轴上的概率;

2)求点M正好落在区域上的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0 , 当xx0时,就有(
A.f(x)>g(x)>h(x
B.h(x)>g(x)>f(x
C.f(x)>h(x)>g(x
D.g(x)>f(x)>h(x

查看答案和解析>>

同步练习册答案