精英家教网 > 高中数学 > 题目详情
8.已知x>0,y>0,x+2y+2xy=8.
(1)求xy的最大值;
(2)求x+2y的最小值.

分析 首先分析题目由已知x>0,y>0,x+2y+2xy=8,猜想到基本不等式的用法,利用a+b≥2$\sqrt{ab}$,代入已知条件,即可得到(1),(2)的最值.

解答 解:考察基本不等式x+2y=8-x•(2y)≥8-($\frac{x+2y}{2}$)2(当且仅当x=2y时取等号),
整理得(x+2y)2+4(x+2y)-32≥0,
即(x+2y-4)(x+2y+8)≥0,又x+2y>0,
所以x+2y≥4(当且仅当x=2y=2时取等号),
即有2xy=8-(x+2y)≤8-4=4,
即xy≤2(当且仅当x=2,y=1取得等号),
可得(1)xy的最大值为2;
(2)x+2y的最小值为4.

点评 此题主要考查基本不等式的用法,对于不等式a+b≥2$\sqrt{ab}$在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.直线a与直线b无公共点,则(  )
A.a∥bB.a,b异面C.a∥b或a,b异面D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{e}^{x},x≤1}\end{array}\right.$,则使得f(x)<1成立的x的取值范围是(-∞,0)∪(1,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面α内的三点A(0,0,1)、B(0,1,0)、C(1,0,0),平面β的一个法向量为(-1,-1,-1),且β与α不重合(  )
A.α∥βB.α⊥β
C.α与β相交但不垂直D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)若f($\frac{1}{3}$)=-1,求满足f(x)-f($\frac{1}{x-2}$)≥2的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,-4≤x≤0}\\{{2}^{x}+1,x>0}\end{array}\right.$则y=f[f(x)]-3的零点为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知各项都为正数的数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$,且64a10-a4=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=|lnx|中,f(m)=f(n)且m<n,则log2$\sqrt{m}$+log4n=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记$\sum_{i=1}^{n}$ai=a1+a2+…+an,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an,设关于实数x的函数fn(x)=$\frac{nx-n}{\underset{\stackrel{n}{π}}{i=1}[ix-(i-1)]}$(n∈N*)满足$\sum_{i=1}^{2015}$fi(x)<1,则x可取的值为(  )
A.-$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{31}{40}$D.$\frac{49}{60}$

查看答案和解析>>

同步练习册答案